Abstract
The paper presents new criteria for bijectivity/transitivity of T-functions and a fast knapsack-like algorithm of evaluation of a T-function. Our approach is based on non-Archimedean ergodic theory: Both the criteria and algorithm use van der Put series to represent 1-Lipschitz p-adic functions and to study measure-preservation/ergodicity of these.
Similar content being viewed by others
References
Anashin V.: Ergodic transformations in the space of p-adic integers. In: Khrennikov A., Rakić Z., Volovich I. (eds.) p-adic Mathematical Physics. 2-nd International Conference (Belgrade, Serbia and Montenegro, 15–21 Sept 2005). AIP Conference Proceedings, vol. 826, pp. 3–24. American Institute of Physics, Melville (2006).
Anashin V.: Non-Archimedean theory of T-functions. In: Logachev O., Preneel B. (eds.) Proceedings on Advanced Study Institute Boolean Functions in Cryptology and Information Security, NATO Science Peace Security Series D: Information and Communication Security 18, pp. 33–57. IOS Press, Amsterdam (2008).
Anashin V.: Non-Archimedean ergodic theory and pseudorandom generators. Comput. J. 53, 370–392 (2010)
Anashin V., Khrennikov A.: Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics, vol. 49. Walter de Gruyter GmbH & Co., Berlin (2009).
Anashin V.S.: Uniformly distributed sequences of p-adic integers. Math. Notes 55, 109–133 (1994)
Anashin V.S.: Uniformly distributed sequences in computer algebra, or how to construct program generators of random numbers. J. Math. Sci. 89, 1355–1390 (1998)
Anashin V.S.: Uniformly distributed sequences of p-adic integers. Discret. Math. Appl. 12, 527–590 (2002)
Anashin V.S.: Pseudorandom number generation by p-adic ergodic transformations. http://arxiv.org/abs/cs.CR/0401030. Accessed 29 Jan 2004.
Anashin V.S., Khrennikov A.Y., Yurova E.I.: Characterization of ergodicity of p-adic dynamical systems by using van der Put basis. Doklady Math. 83, 306–308 (2011)
Anashinm V.: Automata finiteness criterion in terms of van der Put series of automata functions. p Adic Num. Ultrametr. Anal. Appl. 4, 151–160 (2012)
Anashin V.: The non-Archimedean theory of discrete systems. Math. Comput. Sci. http://arxiv.org/abs/1112.5096. Accessed 21 Dec 2011.
Anashin V.: Uniformly distributed sequences over p-adic integers. In: Shparlinsky I., van der Poorten A.J., Zimmer H.G. (eds.) Proceedings of International Conference on Number Theoretic and Algebraic Methods in Computer Science (Moscow, June–July, 1993), pp. 1–18. World Scientific, Singapore (1995).
Anashin V., Bogdanov A., Kizhvatov I.: ABC, A new fast flexible stream cipher, version 3. eSTREAM Report (2005). http://www.ecrypt.eu.org/stream/p2ciphers/abc/abc_p2.pdf. Accessed 24 Aug 2012.
Dénes J., Keedwell A.D.: Latin Squares. North-Holland, Amsterdam (1991)
Hong J., Lee D., Yeom Y., Han D.: A new class of single cycle T-functions. In: Fast Software Encryption, Lecture Notes on Computer Science, vol. 3557, pp. 68–82. Springer, Berlin (2005).
Hong J., Lee D., Yeom Y., Han D.: T-function based stream cipher TSC-3, eSTREAM Report no. 2005/031 (2005). http://www.ecrypt.eu.org/stream/ciphers/tsc3/tsc3.pdf. Accessed 16 April 2005.
Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1998)
Khrennikov A.Y.: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer Academic, Dordrecht (1997)
Khrennikov A.Y.: Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena. Kluwer Academic, Dordreht (2004)
Khrennikov A.Y., Nilsson M.: p-adic Deterministic and Random Dynamics. Kluver Academic, Dordrecht (2004)
Klimov A.: Applications of T-functions in cryptography. Ph.D. Thesis, Weizmann Institute of Science, Rehovot (2005). http://www.wisdom.weizmann.ac.il/~ask/.
Klimov A., Shamir A.: Cryptographic applications of T-functions. In: Selected Areas in Cryptography. Lecture Notes on Computer Science, vol. 3006, pp. 248–261. Springer, Berlin (2003).
Klimov A., Shamir A. et al.: A new class of invertible mappings. In: Kaliski, B.S (eds.) Cryptographic Hardware and Embedded Systems 2002. Lecture Notes on Computer Science, vol. 2523, pp. 470–483. Springer, Berlin (2003)
Klimov A., Shamir A.: New cryptographic primitives based on multiword T-functions. In: Roy, B., Meier, W. (eds.) Fast Software Encryption. Lecture Notes on Computer Science, vol. 3017, pp. 1–15. Springer, Berlin (2004)
Klimov A., Shamir A.: New applications of T-functions in block ciphers and hash functions. In: Gilbert, H., Handschuh, H. (eds.) Fast Software Encryption. Lecture Notes in Computer Science, vol. 3557, pp. 18–31. Springer, Berlin (2005)
Klimov A., Shamir A.: The TF-i Family of Stream Ciphers. The State of the Art of Stream Ciphers—SASC, Bruges (2004)
Koblitz N.: p-adic numbers, p-adic analysis, and zeta-functions, 2nd edn. In: Graduate Texts in Mathematics, vol. 58. Springer, Berlin (1984).
Kolokotronis N.: Cryptographic properties of nonlinear pseudorandom number generators. Des. Codes Cryptogr. 46, 353–363 (2008)
Kotomina L.: Fast nonlinear congruential generators. Diploma Thesis, Russian State University for the Humanities, Moscow (1999); In Russian.
Kuipers L., Niederreiter H.: Uniform Distribution of Sequences. Wiley, New York (1974)
Larin M.V.: Transitive polynomial transformations of residue class rings. Discret. Math. Appl. 12, 141–154 (2002)
Lausch H., Nöbauer W.: Algebra of Polynomials, vol. 5. North Holland Mathematics Library, North-Holland, American Elsevier, Amsterdam (1973).
Laywine C.F., Mullen G.L.: Discrete Mathematics Using Latin Squares. Wiley, New York (1998)
Lin D., Shi T., Yang Z.: Ergodic theory over \(\mathbb{F}_2\)[[X]] . Finite Fields Appl. 18, 473–491 (2012)
Lunts A.G.: The p-adic apparatus in the theory of finite automata. Problemy Kibernetiki 14, 17–30 (1965) In Russian
Mahler K.: p-Adic Numbers and Their Functions, 2nd edn. Cambridge University Press, Cambridge (1981)
Maximov A.: A new stream cipher Mir-1, eSTREAM Report no. 2005/017 (2005). http://www.ecrypt.eu.org/stream. Accessed 29 Sept 2005.
Molland H., Helleseth T.: A linear weakness in the Klimov-Shamir T-function. In: Proceedings on 2005 IEEE International Symposium on Information Theory, pp. 1106–1110. IEEE, Adelaide (2005).
Molland H., Helleseth T.: Linear properties in T-functions. IEEE Trans. Inf. Theory 52, 5151–5157 (2006)
Moon D., Kwon D., Han D., Lee J., Ryu G.H., Lee W.D. Yeom Y., Chee S.: T-function based stream Cipher TSC-4. eSTREAM Report no. 2006/024 (2006). http://www.ecrypt.eu.org/stream/papersdir/2006/024.pdf. Accessed 24 Aug 2012.
O’Neil S., Gittins B., Landman H.: VEST. eSTREAM Report (2006). http://www.ecrypt.eu.org/stream/vestp2.html. Accessed 3 Aug 2006.
Schikhof W.H.: Ultrametric Calculus. Cambridge University Press, Cambridge (1984)
Shi T., Anashin V., Lin D.: Linear Weaknesses in T-functions. In: Helleseth T., Jedwab J. (eds.) SETA 2012, Lecture Notes on Computer Science, vol. 7280, pp. 279–290. Springer, Berlin (2012).
Shi T., Anashin V., Lin D.: Linear Relation on General Ergodic T-Function. http://arxiv.org/abs/1111.4635v1. Accessed 24 Aug 2012.
Synaptic Labs Ltd.: Synaptic VEST cipher-hash home. http://synaptic-labs.com/technologies/data-privacy-and-integrity/vest-cipher-hash.html. Accessed 24 Aug 2012.
Wang J.-S., Qi W.-F. et al.: Linear equation on polynomial single cycle T-function. In: Pei, D. (ed.) Inscrypt 2007. Lecture Notes on Computer Science, vol. 4490, pp. 256–270. Springer, Berlin (2008)
Wirt K.-T.: ASC—a stream cipher with built-in MAC functionality. In: Proceedings on World Academy of Science, Engineering and Technology, vol. 23. World Academy of Science, Bangalore (2007).
Yablonsky S.V.: Basic notions of cybernetics. In: Problems of Cybernetics. Fizmatgiz, Moscow (1959); In Russian.
Yurova E.I.: Van der Put basis and p-adic dynamics. p Adic Num. Ultrametr. Anal. Appl. 2, 175–178 (2010)
Zhang W., Wu C.-K. et al.: The algebraic normal form, linear complexity and k-error linear complexity of single-cycle T-function. In: Gong, G. (eds.) SETA 2006. Lecture Notes on Computer Science, vol. 4086, pp. 391–401. Springer, Berlin (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Boyd.
Rights and permissions
About this article
Cite this article
Anashin, V., Khrennikov, A. & Yurova, E. T-functions revisited: new criteria for bijectivity/transitivity. Des. Codes Cryptogr. 71, 383–407 (2014). https://doi.org/10.1007/s10623-012-9741-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-012-9741-z
Keywords
- T-function
- Bijectivity
- Transitivity
- Non-Archimedean ergodic theory
- van der Put series
- Ergodicity
- Measure-preservation