Abstract
Due to their remarkable application in many branches of applied mathematics such as combinatorics, coding theory, and cryptography, Vandermonde matrices have received a great amount of attention. Maximum distance separable (MDS) codes introduce MDS matrices which not only have applications in coding theory but also are of great importance in the design of block ciphers. Lacan and Fimes introduce a method for the construction of an MDS matrix from two Vandermonde matrices in the finite field. In this paper, we first suggest a method that makes an involutory MDS matrix from the Vandermonde matrices. Then we propose another method for the construction of 2n × 2n Hadamard MDS matrices in the finite field GF(2q). In addition to introducing this method, we present a direct method for the inversion of a special class of 2n × 2n Vandermonde matrices.
Similar content being viewed by others
References
Althaus H.L., Leake R.J.: Inverse of a finite-field Vandermonde matrix. IEEE Trans. Inform. Theory 15, 173 (1969)
Biham E., Shamir A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Berlin (1993)
Barreto P., Rijmen V.: The Anubis Block Cipher. Submission to the NESSIE Project (2000). Available at http://cryptonessie.org.
Barreto P., Rijmen V.: The Khazad Legacy-Level Block Cipher. Submission to the NESSIE Project (2000). Available at http://cryptonessie.org.
Daemen J., Rijmen V.: The Design of Rijndael: AES—The Advanced Encryption Standard. Springer, Berlin (2002)
Filho G.D., Barreto P., Rijmen V.: The Maelstrom-0 hash function. In: Proceedings of the 6th Brazilian Symposium on Information and Computer Systems Security (2006).
Gauravaram P., Knudsen L.R., Matusiewicz K., Mendel F., Rechberger C., Schlaffer M., Thomsen S.: Grøstl a SHA-3 Candidate. Submission to NIST (2008). Available at http://www.groestl.info.
Junod P., Vaudenay S.: Perfect Diffusion primitives for block ciphers building efficient MDS matrices. In: SAC’04, pp. 84–99. Springer, Heidelberg (2004).
Lacan J., Fimes J.: Systematic MDS erasure codes based on vandermonde matrices. IEEE Trans. Commun. Lett. 8(9), 570–572 (2004)
Lin S., Costello D.: Error Control Coding: Fundamentals and Applications, 2nd edn. Prentice Hall, Englewood Cliffs (2004)
MacWilliams F.J., Sloane N.J.A.: The theory of error correcting codes. North-Holland (1977).
Matsui M.: Linear cryptanalysis method for DES cipher. In: EUROCRYPT’93, pp. 386–397. Springer, Heidelberg (1993).
Nakahara J. Jr., Abrahao E.: A new involutory MDS matrix for the AES. IJNS 9(2), 109–116 (2009)
Rijmen V.: Cryptanalysis and Design of Iterated Block Ciphers. Ph.D. thesis, Dept. Elektrotechniek Katholieke Universiteit Leuven, pp. 228–238 (1998).
Sony Corporation: The 128-bit Block cipher CLEFIA: Algorithm Specification (2007). Available at http://www.sony.co.jp/Products/cryptography/clefia/download/data/clefia-spec-1.0.pdf.
Yan S., Yang A.: Explicit algorithm to the inverse of Vandermonde matrix. In: ICTM 2009, pp. 176–179 (2009).
Youssef A.M., Mister S., Tavares S.E.: On the design of linear transformations for substitution permutation encryption networks. In: SAC’97, pp. 1–9 (1997).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. Jedwab.
Rights and permissions
About this article
Cite this article
Sajadieh, M., Dakhilalian, M., Mala, H. et al. On construction of involutory MDS matrices from Vandermonde Matrices in GF(2q). Des. Codes Cryptogr. 64, 287–308 (2012). https://doi.org/10.1007/s10623-011-9578-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-011-9578-x