Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On quasi-symmetric designs with intersection difference three

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In a recent paper, Pawale (Des Codes Cryptogr, 2010) investigated quasi-symmetric 2-(v, k, λ) designs with intersection numbers x > 0 and y = x + 2 with λ > 1 and showed that under these conditions either λ = x + 1 or λ = x + 2, or \({\mathcal{D}}\) is a design with parameters given in the form of an explicit table, or the complement of one of these designs. In this paper, quasi-symmetric designs with yx = 3 are investigated. It is shown that such a design or its complement has parameter set which is one of finitely many which are listed explicitly or λ ≤ x + 4 or 0 ≤ x ≤ 1 or the pair (λ, x) is one of (7, 2), (8, 2), (9, 2), (10, 2), (8, 3), (9, 3), (9, 4) and (10, 5). It is also shown that there are no triangle-free quasi-symmetric designs with positive intersection numbers x and y with y = x + 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baartmans A., Shrikhande M.S.: Designs with no three mutually disjoint blocks. Discrete Math. 40, 129–139 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  • Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd ed., Vols. 1,2. Cambridge University Press, Cambridge (1999).

    Google Scholar 

  • Bracken C., McGuire G., Ward H.N.: New quasi-symmetric designs constructed using mutually orthogonal Latin squares and Hadamard matrices. Des. Codes Cryptogr. 41, 195–198 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  • Calderbank A.R.: Geometric invariants for quasi-symmetric designs. J. Comb. Theory (A).47, 101–110 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  • Calderbank A.R.: Inequalities for quasi-symmetric designs. J. Comb. Theory (A). 48(1), 53–64 (1988).

    Article  MathSciNet  Google Scholar 

  • Cameron P.J.: Quasi-symmetric 2-designs possessing a spread, In: Barlotti A. et al. (eds.), Combinatorics’88. Mediterranean Press, pp. 231–236. Rome, Italy (1992).

    Google Scholar 

  • Hughes D.R., Piper F.C.: Design Theory. Cambridge University Press, Cambridge (1985).

    Book  MATH  Google Scholar 

  • Jungnickel D., Tonchev V.D.: Polarities, quasi-symmetric designs, and Hamada’s conjecture. Des. Codes Cryptogr. 51, 131–140 (2009)

    Article  MathSciNet  Google Scholar 

  • Klin M.H., Woldar A.J.: The strongly regular graph with parameters (100, 22, 0, 6): Hidden history and beyond. preprint.

  • Lam C.W.H., Tonchev V.D.: Classification of affine resolvable 2−(27, 9, 4) designs. J. Stat. Plann. Inference 56(2), 187–202 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  • Limaye N.B., Sane S.S., Shrikhande M.S.: The structure of triangle-free quasi-symmetric designs. Discrete Math. 64, 199–207 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  • Majumdar K.N.: On some theorems in combinatorics related to incomplete block designs. Ann. Math. Stat. 24, 377–389 (1953)

    Article  MATH  Google Scholar 

  • Mavron V.C., Shrikhande M.S.: Designs with intersection numbers 0 and 2. Arch. Math. 52, 407–412 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  • Mavron V.C., McDonough T.P., Shrikhande M.S.: Quasi-symmetric designs with good blocks and intersection number one. Des. Codes Cryptogr. 28, 147–162 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  • Maxima, a Computer Algebra System. Version 5.18.1 http://maxima.sourceforge.net (2009).

  • McDonough T.P., Mavron V.C.: Quasi-symmetric designs with good blocks. J. Comb. Des. 3, 433–441 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  • McDonough T.P., Mavron V.C., Ward H.N.: Amalgams of designs and nets. Bull. Lond. Math. Soc. 41, 841–852 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Meyerowitz A., Sane S.S., Shrikhande M.S.: New results on quasi-symmetric designs-an application of MACSYMA. J. Comb. Theory (A). 43(1), 277–290 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  • Pawale R.M.: Quasi-symmetric 3-designs with triangle-free graph. Geom. Dedicata. 37, 205–210 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  • Pawale R.M.: Non existence of triangle free quasi-symmetric designs. Des. Codes Cryptogr. 37, 347–353 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  • Pawale R.M.: Quasi-symmetric designs with fixed difference of block intersection numbers. J. Comb. Des. 15, 49–60 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Pawale R.M.: Quasi-symmetric designs with the difference of block intersection numbers two. Des. Codes Cryptogr. (2010). doi:10.1007/s10623-010-9384-x.

  • Pawale R.M.: A note on triangle free quasi-symmetric designs, (preprint). (2010).

  • Sane S.S., Shrikhande M.S.: Some characterizations of quasi-symmetric designs with a spread. Des. Codes Cryptogr. 3, 155–166 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  • Shrikhande M.S.: Designs with triangle free graph. In: Proceedings of the seminar on Combinatorics and Applications in honour of Prof. S.S. Shrikhande on his 65th birthday, Indian Staistical Institute, pp. 30–37, December 14–17 1982.

  • Shrikhande M.S., Sane S.S.: Quasi-Symmetric Designs, London Mathematical Society, Lecture Note Series 164, Cambridge University Press, Cambridge (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shrikhande.

Additional information

Communicated by D. Ghinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mavron, V.C., McDonough, T.P. & Shrikhande, M.S. On quasi-symmetric designs with intersection difference three. Des. Codes Cryptogr. 63, 73–86 (2012). https://doi.org/10.1007/s10623-011-9536-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9536-7

Keywords

Mathematics Subject Classification (2000)

Navigation