Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fractional dimensions in semifields of odd order

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A finite semifield D is considered a fractional dimensional semifield if it contains a subsemifield E such that λ := log|E||D| is not an integer. We develop spread-theoretic tools to determine when finite planes admit coordinatization by fractional semifields, and to find such semifields when they exist. We use our results to show that such semifields exist for prime powers 3n whenever n is an odd integer divisible by 5 or 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caliskan C.: Hughes planes of order 32. In: Hughes Planes of order p 2, for prime p with \({p\cong 1\mod{4}}\) and \({p\cong 2\mod{3}}\), Contributed Talk, Combinatorial Configurations and their Applications, Michigan Technological University, 5–8 August (2009).

  2. Cordero M., Jha V.: Primitive planes and fractional dimensional semifield planes of order q 5. Rendic. Mat. 30, 1–21 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Fisher J.C., Johnson N.L.: Fano configurations in subregular planes. Note di Math. 28, 69–98 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Hansen T., Mullen G.: JSTOR 59, S47–S50 (1992)

    MathSciNet  Google Scholar 

  5. Hentzel I.R., Rúa I.F.: Primitivity of finite semifields with 64 and 81 elements. Int. J. Algebra Comput. 17, 1411–1429 (2007)

    Article  MATH  Google Scholar 

  6. Jha V., Johnson N.L.: The dimension of a subplane of a translation plane. Bull. Belgian Math. Soc. (to appear).

  7. Johnson N.L., Jha V., Biliotti M.: Handbook on Translation Planes. Taylor and Francis Group, New York (2007)

    Google Scholar 

  8. Johnson N.L.: Fano configurations in translation planes. Note di Math. 27, 21–38 (2007)

    MATH  Google Scholar 

  9. Jacobson N.: Basic Algebra II. W. H. Freeman and Company, San Francisco, (1980).

  10. Kantor W.: Finite semifields. In: Proceedings of Conference at Pingree Park, pp. 103–114 (2005).

  11. Leone A.O., de Resmini M.J.: Subplanes of the derived Hughes planes of order 25. Simon Stevin 67, 289–322 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Neumann H.: On some finite non-desarguesian planes. Arch. Math. 6, 36–40 (1955)

    Article  Google Scholar 

  13. Puccio L., de Resmini M.J.: Subplanes of the Hughes planes of order 25. Arch. Math. (Basel) 49, 151–165 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Rúa I.F.: Primitive and non-primitive finite semifields. Commun. Algebra 22, 791–803 (2004)

    Google Scholar 

  15. Schneider T.: Transzendenzuntersuchen periodischer Funktionen I. J. Reine Angew. Math. 172, 65–69 (1934a)

    MATH  Google Scholar 

  16. Schneider T.: Transzendenzuntersuchen periodischer Funktionen II. J. Reine Angew. Math. 172, 70–74 (1934b)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Jha.

Additional information

Communicated by S. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordero, M., Jha, V. Fractional dimensions in semifields of odd order. Des. Codes Cryptogr. 61, 197–221 (2011). https://doi.org/10.1007/s10623-010-9448-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9448-y

Keywords

Mathematics Subject Classification (2000)

Navigation