Abstract
A finite semifield D is considered a fractional dimensional semifield if it contains a subsemifield E such that λ := log|E||D| is not an integer. We develop spread-theoretic tools to determine when finite planes admit coordinatization by fractional semifields, and to find such semifields when they exist. We use our results to show that such semifields exist for prime powers 3n whenever n is an odd integer divisible by 5 or 7.
Similar content being viewed by others
References
Caliskan C.: Hughes planes of order 32. In: Hughes Planes of order p 2, for prime p with \({p\cong 1\mod{4}}\) and \({p\cong 2\mod{3}}\), Contributed Talk, Combinatorial Configurations and their Applications, Michigan Technological University, 5–8 August (2009).
Cordero M., Jha V.: Primitive planes and fractional dimensional semifield planes of order q 5. Rendic. Mat. 30, 1–21 (2010)
Fisher J.C., Johnson N.L.: Fano configurations in subregular planes. Note di Math. 28, 69–98 (2008)
Hansen T., Mullen G.: JSTOR 59, S47–S50 (1992)
Hentzel I.R., Rúa I.F.: Primitivity of finite semifields with 64 and 81 elements. Int. J. Algebra Comput. 17, 1411–1429 (2007)
Jha V., Johnson N.L.: The dimension of a subplane of a translation plane. Bull. Belgian Math. Soc. (to appear).
Johnson N.L., Jha V., Biliotti M.: Handbook on Translation Planes. Taylor and Francis Group, New York (2007)
Johnson N.L.: Fano configurations in translation planes. Note di Math. 27, 21–38 (2007)
Jacobson N.: Basic Algebra II. W. H. Freeman and Company, San Francisco, (1980).
Kantor W.: Finite semifields. In: Proceedings of Conference at Pingree Park, pp. 103–114 (2005).
Leone A.O., de Resmini M.J.: Subplanes of the derived Hughes planes of order 25. Simon Stevin 67, 289–322 (1993)
Neumann H.: On some finite non-desarguesian planes. Arch. Math. 6, 36–40 (1955)
Puccio L., de Resmini M.J.: Subplanes of the Hughes planes of order 25. Arch. Math. (Basel) 49, 151–165 (1987)
Rúa I.F.: Primitive and non-primitive finite semifields. Commun. Algebra 22, 791–803 (2004)
Schneider T.: Transzendenzuntersuchen periodischer Funktionen I. J. Reine Angew. Math. 172, 65–69 (1934a)
Schneider T.: Transzendenzuntersuchen periodischer Funktionen II. J. Reine Angew. Math. 172, 70–74 (1934b)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by S. Ball.
Rights and permissions
About this article
Cite this article
Cordero, M., Jha, V. Fractional dimensions in semifields of odd order. Des. Codes Cryptogr. 61, 197–221 (2011). https://doi.org/10.1007/s10623-010-9448-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-010-9448-y