Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Distributing the Encryption and Decryption of a Block Cipher

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In threshold cryptography, the goal is to distribute the computation of basic cryptographic primitives across a number of nodes in order to relax trust assumptions on individual nodes, as well as to introduce a level of fault-tolerance against node compromise. Most threshold cryptography has previously looked at the distribution of public key primitives, particularly threshold signatures and threshold decryption mechanisms. In this paper, we look at the application of threshold cryptography to symmetric primitives, and in particular the encryption or decryption of a symmetric key block cipher. We comment on some previous work in this area and then propose a model for shared encryption / decryption of a block cipher. We will present several approaches to enable such systems and will compare them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aiello M. Bellare G. Di Crescenzo R. Venkatesan (1998) ArticleTitleSecurity amplification by composition: The case of doubly-iterated, ideal ciphers Advances in Cryptology: Crypto ’98, Lecture Notes in Computer Science 1462 390–407

    Google Scholar 

  2. S. R. Blackburn (1999) Combinatorics and threshold cryptography F. C. Holroyd K. A. S. Quinn C. Rowley B. S. Web (Eds) Combinatorial Designs and their Applications, Chapman and Hall/CRC Research Notes in Mathematics CRC Press London 49–70

    Google Scholar 

  3. S. R. Blackburn P. R. Wild (1998) ArticleTitleOptimal linear perfect hash families Journal of Combinatorial Theory – Series A 83 233–250 Occurrence Handle10.1006/jcta.1998.2876

    Article  Google Scholar 

  4. D. Boneh M. Franklin (1997) ArticleTitleEfficient generation of shared RSA keys Advances in Cryptology: Crypto ’97, Lecture Notes in Computer Science 1233 425–439

    Google Scholar 

  5. C. Boyd, Digital multisignatures. In Cryptography and Coding, Oxford University Press (1989) pp. 241–246.

  6. E. F. Brickell D. M. Davenport (1991) ArticleTitleOn the classification of ideal secret sharing schemes Journal of Cryptology 4 123–134

    Google Scholar 

  7. E. Brickell G. Di Crescenzo Y. Frankel (2000) ArticleTitleSharing block ciphers Information Security and Privacy, Lecture Notes in Computer Science 1841 457–470

    Google Scholar 

  8. R. Canetti S. Goldwasser (1999) ArticleTitleAn efficient threshold public-key cryptosystem secure against adaptive chosen ciphertext attack Advances in Cryptology: Eurocrypt ’99, Lecture Notes in Computer Science 1592 90–106

    Google Scholar 

  9. D. Chaum E. Heyst Particlevan (1991) ArticleTitleGroup signatures Advances in Cryptology: Eurocrypt ’91, Lecture Notes in Computer Science 547 257–265

    Google Scholar 

  10. C. Cocks (1997) ArticleTitleSplit knowledge generation of RSA parameters Cryptography and Coding, Lecture Notes in Computer Science 1355 89–95

    Google Scholar 

  11. A. De Santis, Y. Desmedt, Y. Frankel and M. Yung, How to share a function securely, Proceedings of ACM Symp. Theory of Computing (STOC) ’94 (1994) pp. 522–533.

  12. Y. Desmedt Y. Frankel (1990) ArticleTitleThreshold cryptosystems Advances in Cryptology: Crypto ’89, Lecture Notes in Computer Science 435 307–315

    Google Scholar 

  13. Y. Desmedt and S. Jajodia, Redistributing secret shares to new access structures and its applications, Technical Report ISSE TR-97-01, George Mason University (July 1997).

  14. Y. Desmedt R. Safavi-Naini H. Wang (2002) ArticleTitleRedistribution of mechanical secret shares Financial Cryptography’02, Lecture Notes in Computer Science 2357 238–252

    Google Scholar 

  15. S. Even O. Goldreich (1985) ArticleTitleOn the power of cascade ciphers ACM Transactions on Computer Systems 3 108–116 Occurrence Handle10.1145/214438.214442

    Article  Google Scholar 

  16. P. Feldman, A practical scheme for non-interactive verifiable secret sharing, In Proceedings of the 28th IEEE Symposium on the Foundations of Computer Science, IEEE Press (1987) pp. 427–437.

  17. P.-A. Fouque G. Poupard J. Stern (2001) ArticleTitleSharing decryption in the context of voting or lotteries Financial Cryptography 2000, Lecture Notes in Computer Science 1962 90–104

    Google Scholar 

  18. R. Gennaro S. Jarecki H. Krawczyk T. Rabin (1996) ArticleTitleRobust threshold DSS signatures Advances in Cryptology: Eurocrypt ’96, Lecture Notes in Computer Science 1070 354–371

    Google Scholar 

  19. R. Gennaro S. Jarecki H. Krawczyk T. Rabin (2000) ArticleTitleRobust and efficient sharing of RSA functions Journal of Cryptology 13 IssueID2 273–300 Occurrence Handle10.1007/s001459910011

    Article  Google Scholar 

  20. M. Ito A. Saito T. Nishizeki (1993) ArticleTitleSecret sharing scheme realizing general access structure Journal of Cryptology 6 15–20

    Google Scholar 

  21. W.-A. Jackson K. M. Martin (1993) ArticleTitleCumulative arrays and geometric secret sharing schemes Advances in Cryptology: Auscrypt ’92, Lecture Notes in Computer Science 718 48–55

    Google Scholar 

  22. K. M. Martin R. Safavi-Naini H. Wang (1999) ArticleTitleBounds and constructions for the redistribution of secret shares to new access structures The Computer Journal 42 IssueID8 638–649 Occurrence Handle10.1093/comjnl/42.8.638

    Article  Google Scholar 

  23. K. M. Martin, J. Pieprzyk, R. Safavi-Naini, H. Wang and P. Wild, Threshold MACs, 5th Information Security and Cryptology – ICISC’02, Lecture Notes in Computer Science, Vol. 2587 (2003) pp. 237–252.

  24. U. Maurer J. Massey (1993) ArticleTitleCascade ciphers: The importance of being first Journal of Cryptology 6 IssueID1 55–61

    Google Scholar 

  25. K. Mehlhorn. Data Structures and Algorithms, Vol. 1, Springer-Verlag (1984).

  26. A. Shamir (1976) ArticleTitleHow to share a secret Communications of the ACM 22 612–613 Occurrence Handle10.1145/359168.359176

    Article  Google Scholar 

  27. G. J. Simmons W.-A. Jackson K. Martin (1991) ArticleTitleThe geometry of shared secret schemes Bulletin of the ICA 1 71–88

    Google Scholar 

  28. D. R. Stinson T. Trung Particlevan R. Wei (2000) ArticleTitleSecure frameproof codes, key distribution patterns, group testing algorithms and related structures Journal of Statistical Plannning and Inference 86 595–617 Occurrence Handle10.1016/S0378-3758(99)00131-7

    Article  Google Scholar 

  29. D. S. Stinson R. Wei L. Zhu (2000) ArticleTitleNew constructions for perfect hash families and related structures using combinatorial designs and codes Journal of Combinatorial Designs 8 189–200 Occurrence Handle10.1002/(SICI)1520-6610(2000)8:3<189::AID-JCD4>3.0.CO;2-A

    Article  Google Scholar 

  30. H. Wang C. Xing (2001) ArticleTitleExplicit constructions of perfect hash families from algebraic curves over finite fields Journal of Combinatorial Theory - Series A 93 112–124 Occurrence Handle10.1006/jcta.2000.3068

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. Martin.

Additional information

AMS classification: 94A60, 94A62, 68P25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, K.M., Safavi-Naini, R., Wang, H. et al. Distributing the Encryption and Decryption of a Block Cipher. Des Codes Crypt 36, 263–287 (2005). https://doi.org/10.1007/s10623-003-1719-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-003-1719-4

Keywords

Navigation