Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Tackling ordinal regression problem for heterogeneous data: sparse and deep multi-task learning approaches

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

Many real-world datasets are labeled with natural orders, i.e., ordinal labels. Ordinal regression is a method to predict ordinal labels that finds a wide range of applications in data-rich domains, such as natural, health and social sciences. Most existing ordinal regression approaches work well for independent and identically distributed (IID) instances via formulating a single ordinal regression task. However, for heterogeneous non-IID instances with well-defined local geometric structures, e.g., subpopulation groups, multi-task learning (MTL) provides a promising framework to encode task (subgroup) relatedness, bridge data from all tasks, and simultaneously learn multiple related tasks in efforts to improve generalization performance. Even though MTL methods have been extensively studied, there is barely existing work investigating MTL for heterogeneous data with ordinal labels. We tackle this important problem via sparse and deep multi-task approaches. Specifically, we develop a regularized multi-task ordinal regression (MTOR) model for smaller datasets and a deep neural networks based MTOR model for large-scale datasets. We evaluate the performance using three real-world healthcare datasets with applications to multi-stage disease progression diagnosis. Our experiments indicate that the proposed MTOR models markedly improve the prediction performance comparing with single-task ordinal regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://ttic.uchicago.edu/~argyriou/code/

  2. http://sysbio.rnet.missouri.edu/multicom_toolbox/tools.html

  3. https://www.cdc.gov/brfss/annual_data/annual_2016.html

References

  • Ando RK, Zhang T (2005) A framework for learning predictive structures from multiple tasks and unlabeled data. J Machine Learn Res 6:1817–1853

    MathSciNet  MATH  Google Scholar 

  • Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Machine Learn 73(3):243–272

    Article  Google Scholar 

  • Baetschmann G, Staub KE, Winkelmann R (2015) Consistent estimation of the fixed effects ordered logit model. J Royal Statistical Soc: Series A (Statistics Soc) 178(3):685–703

    Article  MathSciNet  Google Scholar 

  • Baxter J (1997) A bayesian/information theoretic model of learning to learn via multiple task sampling. Machine learn 28(1):7–39

    Article  Google Scholar 

  • Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag sci 2(1):183–202

    Article  MathSciNet  Google Scholar 

  • Cruickshank TM, Reyes AR, Ziman MR (2015) A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or parkinson disease. Medicine 94:4

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of alzheimer’s disease. Alzheimer’s & dementia: J Alzheimer’s Assoc 3(3):186–191

    Article  Google Scholar 

  • Buja A, Damiani G, Gini R, Visca M, Federico B, Donato D, Francesconi P, Marini A, Donatini A, Brugaletta S et al (2014) Systematic age-related differences in chronic disease management in a population-based cohort study: a new paradigm of primary care is required. PLoS One 9(3):e91340

    Article  Google Scholar 

  • Grosskreutz H, Rüping S (2009) On subgroup discovery in numerical domains. Data min knowl discov 19(2):210–226

  • Chan DS, Norat T (2015) Obesity and breast cancer: not only a risk factor of the disease. Current treat opt oncol 16(5):22

    Article  Google Scholar 

  • Cheng J, Wang Z, Pollastri G (2008) A neural network approach to ordinal regression, in Neural Networks, IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on. IEEE 2008:1279–1284

  • Hamidi D. Yar, Wennberg K, Berglund H (2008) Creativity in entrepreneurship education. J small bus enterp dev 15(2):304–320

  • Chu W, Keerthi SS (2007) Support vector ordinal regression. Neural comput 19(3):792–815

    Article  MathSciNet  Google Scholar 

  • Liu Y, Kong A. W.-K, Goh C. K (2017) “Deep ordinal regression based on data relationship for small datasets.” in IJCAI, pp. 2372–2378

  • Cruickshank TM, Reyes AR, Ziman MR (2015) A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or parkinson disease. Medicine 94:4

    Article  Google Scholar 

  • Cruz GD, Galvis DL, Kim M, Le-Geros RZ, Barrow S-YL, Tavares M, Bachiman R (2001) Self-perceived oral health among three subgroups of asian-americans in new york city: a preliminary study. Commun dent oral epidemiol 29(2):99–106

    Article  Google Scholar 

  • Davis DA, Chawla NV, Christakis NA, Barabási A-L (2010) Time to care: a collaborative engine for practical disease prediction. Data Min Knowl Discov 20(3):388–415

    Article  MathSciNet  Google Scholar 

  • Domingo-Ferrer J, Torra V (2005) Ordinal, continuous and heterogeneous k-anonymity through microaggregation. Data Min Knowl Discov 11(2):195–212

    Article  MathSciNet  Google Scholar 

  • Lanfranchi M, Giannetto C, Zirilli A, Alibrandi A (2014) Analysis of the demand of wine in sicily through ordinal logistic regression model. Calitatea 15(139):87

  • Duricova D, Burisch J, Jess T, Gower-Rousseau C, Lakatos PL (2014) ECCO-EpiCom, & Age-related differences in presentation and course of inflammatory bowel disease an update on the population-based literature. Journal of Crohn’s and Colitis 8(11):1351–1361

    Article  Google Scholar 

  • Kato T, Kashima H, Sugiyama M, Asai K (2008) “Multi-task learning via conic programming,” in Advances in Neural Information Processing Systems, pp. 737–744

  • Park S-H, Fürnkranz J (2012) Efficient prediction algorithms for binary decomposition techniques. Data Min Knowl Discov 24(1):40–77

  • Har-Peled S, Roth D, Zimak D, (2002) “Constraint classification: A new approach to multiclass classification and ranking,” in In Advances in Neural Information Processing Systems 15. Citeseer,

  • Gursoy ME, Inan A, Nergiz ME, Saygin Y (2017) Differentially private nearest neighbor classification. Data Min Knowl Discov 31(5):1544–1575

  • Geifman N, Cohen R, Rubin E (2013) Redefining meaningful age groups in the context of disease. Age 35(6):2357–2366

    Article  Google Scholar 

  • Grosskreutz H, Rüping S (2009) On subgroup discovery in numerical domains. Data min knowl discov 19(2):210–226

    Article  MathSciNet  Google Scholar 

  • Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural netw learn syst 26(7):1403–1416

    Article  MathSciNet  Google Scholar 

  • Gursoy ME, Inan A, Nergiz ME, Saygin Y (2017) Differentially private nearest neighbor classification. Data Min Knowl Discov 31(5):1544–1575

    Article  MathSciNet  Google Scholar 

  • Gutiérrez PA, Perez-Ortiz M, Sanchez-Monedero J, Fernandez-Navarro F, Hervas-Martinez C (2016) Ordinal regression methods: survey and experimental study. IEEE Trans Knowl Data Eng 28(1):127–146

    Article  Google Scholar 

  • Schmidt-Richberg A, Guerrero R, Ledig C, Molina-Abril H, Frangi A. F, Rueckert D, Initiative A. D. N et al., (2015) “Multi-stage biomarker models for progression estimation in alzheimer’s disease,” in International Conference on Information Processing in Medical Imaging. Springer, pp. 387–398

  • Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural netw learn syst 26(7):1403–1416

  • Henriques R, Madeira SC, Antunes C (2015) Multi-period classification: learning sequent classes from temporal domains. Data Min Knowl Discov 29(3):792–819

    Article  MathSciNet  Google Scholar 

  • Hong HG, He X (2010) Prediction of functional status for the elderly based on a new ordinal regression model. J Am Statistical Assoc 105(491):930–941

    Article  MathSciNet  Google Scholar 

  • Wang L, Dong M, Towner E, Zhu D (2019) “Prioritization of multi-level risk factors for obesity,” in 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, pp. 1065–1072

  • Kaplan D (2004) The Sage handbook of quantitative methodology for the social sciences. Sage

  • Yu S, Yu K, Tresp V, Kriegel H.-P (2006) “Collaborative ordinal regression,” in Proceedings of the 23rd international conference on Machine learning. ACM, , pp. 1089–1096

  • Kim M (2014) Conditional ordinal random fields for structured ordinal-valued label prediction. Data min knowl discov 28(2):378–401

    Article  MathSciNet  Google Scholar 

  • Kockelman KM, Kweon Y-J (2002) Driver injury severity: an application of ordered probit models. Accident Analysis & Prevention 34(3):313–321

    Article  Google Scholar 

  • Lanfranchi M, Giannetto C, Zirilli A, Alibrandi A (2014) Analysis of the demand of wine in sicily through ordinal logistic regression model. Calitatea 15(139):87

    Google Scholar 

  • Lemmerich F, Atzmueller M, Puppe F (2016) Fast exhaustive subgroup discovery with numerical target concepts. Data Min Knowl Discov 30(3):711–762

    Article  MathSciNet  Google Scholar 

  • Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Machine Learn 73(3):243–272

  • Liu J, Ji S, Ye J (2009) “Multi-task feature learning via efficient l 2, 1-norm minimization,” in Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press, pp. 339–348

  • Gutiérrez PA, Perez-Ortiz M, Sanchez-Monedero J, Fernandez-Navarro F, Hervas-Martinez C (2016) Ordinal regression methods: survey and experimental study. IEEE Trans Knowl Data Eng 28(1):127–146

  • Witten IH, Frank E, Hall MA, Pal CJ (2016) Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, United States

  • Li L, Lin H.-T (2007) “Ordinal regression by extended binary classification,” in Advances in neural information processing systems, pp. 865–872

  • Menon AK, Elkan C (2010) Predicting labels for dyadic data. Data Min Knowl Discov 21(2):327–343

    Article  MathSciNet  Google Scholar 

  • Montañés E, Suárez-Vázquez A, Quevedo JR (2014) Ordinal classification/regression for analyzing the influence of superstars on spectators in cinema marketing. Expert Syst Appl 41(18):8101–8111

    Article  Google Scholar 

  • Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, Trojanowski JQ, Toga AW, Beckett L (2005) The alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics 15(4):869–877

    Article  Google Scholar 

  • Nesterov Y (2013) Introductory lectures on convex optimization: A basic course, vol 87. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Ye F, Lord D (2014) Comparing three commonly used crash severity models on sample size requirements: multinomial logit, ordered probit and mixed logit models. Analyt methods accident res 1:72–85

  • Nesterov Y (2013) Introductory lectures on convex optimization: A basic course, vol 87. Springer Science & Business Media, Berlin

  • Park S-H, Fürnkranz J (2012) Efficient prediction algorithms for binary decomposition techniques. Data Min Knowl Discov 24(1):40–77

    Article  MathSciNet  Google Scholar 

  • Zhou J, Chen J, Ye J (2011) “Clustered multi-task learning via alternating structure optimization,” in Advances in neural information processing systems, pp. 702–710

  • Ruder S (2017) “An overview of multi-task learning in deep neural networks,” arXiv preprintarXiv:1706.05098,

  • Duong L, Cohn T, Bird S, Cook P (2015) “Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser,” in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), vol. 2, pp. 845–850

  • Yang Y, Hospedales T. M (2016) “Trace norm regularised deep multi-task learning,” arXiv preprintarXiv:1606.04038,

  • Tran T, Phung D, Luo W, Venkatesh S (2015) Stabilized sparse ordinal regression for medical risk stratification. Knowl Info Syst 43(3):555–582

    Article  Google Scholar 

  • Lu Y, Kumar A, Zhai S, Cheng Y, Javidi T, Feris R (2016) “Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification,” arXiv preprintarXiv:1611.05377,

  • Ando RK, Zhang T (2005) A framework for learning predictive structures from multiple tasks and unlabeled data. J Machine Learn Res 6:1817–1853

  • Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag sci 2(1):183–202

  • Williams R et al (2006) Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata J 6(1):58

    Article  Google Scholar 

  • Witten IH, Frank E, Hall MA, Pal CJ (2016) Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, United States

    Google Scholar 

  • Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, Trojanowski JQ, Toga AW, Beckett L (2005) The alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics 15(4):869–877

  • Yar Hamidi D, Wennberg K, Berglund H (2008) Creativity in entrepreneurship education. J small bus enterp dev 15(2):304–320

    Article  Google Scholar 

  • Ye F, Lord D (2014) Comparing three commonly used crash severity models on sample size requirements: multinomial logit, ordered probit and mixed logit models. Analyt methods accident res 1:72–85

    Article  Google Scholar 

  • Westbrook M. T, Viney L. L (1983) “Age and sex differences in patients’ reactions to illness,” Journal of health and social behavior, pp. 313–324,

  • Geifman N, Cohen R, Rubin E (2013) Redefining meaningful age groups in the context of disease. Age 35(6):2357–2366

Download references

Acknowledgements

This paper is based upon work supported by the National Science Foundation under grants CNS-1637312 and CCF-1451316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxiao Zhu.

Additional information

Responsible editor: Pierre Baldi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhu, D. Tackling ordinal regression problem for heterogeneous data: sparse and deep multi-task learning approaches. Data Min Knowl Disc 35, 1134–1161 (2021). https://doi.org/10.1007/s10618-021-00746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-021-00746-8

Keywords

Navigation