Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Dependence maps, a dimensionality reduction with dependence distance for high-dimensional data

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

We introduce the dependence distance, a new notion of the intrinsic distance between points, derived as a pointwise extension of statistical dependence measures between variables. We then introduce a dimension reduction procedure for preserving this distance, which we call the dependence map. We explore its theoretical justification, connection to other methods, and empirical behavior on real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6): 1373–1396

    Article  MATH  Google Scholar 

  • Bottou L, Cortes C, Denker J, Drucker H, Guyon I, Jackel L, LeCun Y, Muller U, Sackinger E, Simard P, et al (1994) Comparison of classifier methods: a case study in handwritten digitrecognition. In: Proceedings of the 12th IAPR international. conference on pattern recognition, vol 2-conference B: computer vision & image processing

  • Donoho DL, Grimes C (2003) Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci USA 100(10): 5591–5596

    Article  MathSciNet  MATH  Google Scholar 

  • Haykin S (2008) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Lafon S, Keller Y, Coifman RR (2006) Data fusion and multicue data matching by diffusion maps. IEEE Trans Pattern Anal Mach Intell 28(11):1784–1797. http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.223

    Google Scholar 

  • Lee K, Abouelnasr M, Bayer C, Gabram S, Mizaikoff B, Rogatko A, Vidakovic B (2009) Mining exhaled volatile organic compounds for breast cancer detection. Adv Appl Stat Sci 1: 327–342

    MathSciNet  Google Scholar 

  • Mahadevan S, Maggioni M (2006) Value function approximation with diffusion wavelets and Laplacian eigenfunctions. Adv Neural Inf Process Syst 18: 843

    Google Scholar 

  • Mari D, Kotz S (2001) Correlation and dependence. Imperial College Press, London

    Book  MATH  Google Scholar 

  • Nelsen R (2006) An introduction to copulas. Springer, New York

    MATH  Google Scholar 

  • Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500): 2323–2326. doi:10.1126/science.290.5500.2323

    Article  Google Scholar 

  • Scholkopf B, Smola A, Muller K (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5): 1299–1319

    Article  Google Scholar 

  • Smola A, Kondor R (2003) Kernels and regularization on graphs. In: Learning theory and kernel machines: 16th annual conference on learning theory and 7th kernel workshop, COLT/Kernel 2003, Washington, August 24–27, 2003, proceedings. Springer, Berlin, p 144

  • Tenenbaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500): 2319

    Article  Google Scholar 

  • Zhou D, Schölkopf B (2005) Regularization on discrete spaces. Pattern Recognit 361: 361–368

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kichun Lee.

Additional information

Responsible editor: Eamonn Keogh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Gray, A. & Kim, H. Dependence maps, a dimensionality reduction with dependence distance for high-dimensional data. Data Min Knowl Disc 26, 512–532 (2013). https://doi.org/10.1007/s10618-012-0267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-012-0267-9

Keywords

Navigation