Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Synchronized sweep algorithms for scalable scheduling constraints

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

This paper introduces a family of synchronized sweep-based filtering algorithms for handling scheduling problems involving resource and precedence constraints. The key idea is to filter all constraints of a scheduling problem in a synchronized way in order to scale better. In addition to normal filtering mode, the algorithms can run in greedy mode, in which case they perform a greedy assignment of start and end times. The filtering mode achieves a significant speed-up over the decomposition into independent cumulative and precedence constraints, while the greedy mode can handle up to 1 million tasks with 64 resource constraints and 2 million precedences. These algorithms were implemented in both CHOCO and SICStus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to solve complex scheduling and placement problems. Mathematics Computing Modelling, 17(7), 57–73.

    Article  Google Scholar 

  2. Baptiste, P., Le Pape, C., Nuijten, W. (2001). Constraint-based scheduling: applying constraint programming to scheduling problems. International series in operations research and management science. Kluwer.

  3. Beldiceanu, N., & Carlsson, M. (2001). Sweep as a generic pruning technique applied to the non-overlapping rectangles constraint. In CP, LNCS (Vol. 2237, pp. 377–391). Springer.

  4. Beldiceanu, N., & Carlsson, M. (2002). A new multi-resource cumulatives constraint with negative heights. In CP, LNCS (Vol. 2470, pp. 63–79). Springer.

  5. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C. (2007). A generic geometrical constraint kernel in space and time for handling polymorphic k-dimensional objects. In CP, LNCS (Vol. 4741, pp. 180–194). Springer.

  6. Beldiceanu, N., Carlsson, M., Thiel, S. (2006). Sweep synchronisation as a global propagation mechanism. Computers and Operations Research, 33(10), 2835–2851.

    Article  MATH  Google Scholar 

  7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O. (1997). Computational geometry - algorithms and applications. Springer.

  8. Carlsson, M., Ottosson, G., Carlson, B. (1997). An open-ended finite domain constraint solver. In H. Glaser, P. Hartel, H. Kuchen (Eds.), PLILP, LNCS (Vol. 1292, pp. 191–206). Springer. http://sicstus.sics.se/.

  9. Freuder, E., Lee, J., O’Sullivan, B., Pesant, G., Rossi, F., Sellman, M., Walsh, T. (2011). The future of CP. Personal Communication.

  10. Kameugne, R., Fotso, L.P., Scott, J., Ngo-Kateu, Y. (2011). A quadratic edge-finding filtering algorithm for cumulative resource constraints. In CP, LNCS (Vol. 6876, pp. 478–492). Springer.

  11. Kolisch, R., & Sprecher, A. (1996). PSPLIB – a project scheduling problem library. European Journal Of Operational Research, 96, 205–216.

    Article  Google Scholar 

  12. Letort, A. (2013). Passage à l’échelle pour les contraintes d’ordonnancement multi-ressources. Ph.D. thesis, University of Nantes. In French.

  13. Letort, A., Beldiceanu, N., Carlsson, M. (2012). A scalable sweep algorithm for the cumulative constraint. In CP, LNCS (pp. 439–454). Springer.

  14. Letort, A., Carlsson, M., Beldiceanu, N. (2013). A synchronized sweep algorithm for the k-dimensional cumulative constraint. In CPAIOR, LNCS (pp. 144–159). Springer.

  15. Letort, A., Carlsson, M., Beldiceanu, N. (2013). Synchronized sweep algorithms for scalable scheduling constraints. Tech. Rep. T2013-05. Swedish Institute of Computer Science.

  16. O’Sullivan, B. (2011). CP panel position - the future of CP. Personal Communication.

  17. Pape, C.L. (1988). Des systèmes d’ordonnancement flexibles et opportunistes. Ph.D. thesis, Université Paris IX. In French.

  18. Petit, T. (2012). Intermediary local consistencies. In ECAI (pp. 919–920).

  19. Régin, J.C., & Rezgui, M. (2011). Discussion about constraint programming bin packing models. In AI for data center management and cloud computing. AAAI.

  20. ROADEF: Challenge 2012 machine reassignment (2012). http://challenge.roadef.org/2012/en/index.php.

  21. Schaus, P., & Deville, Y. (2008). A global constraint for bin-packing with precedences: application to the assembly line balancing problem. In AAAI (pp. 369–374). AAAI Press.

  22. Schulte, C. (1999). Comparing trailing and copying for constraint programming. In D.D. Schreye (Ed.), ICLP (pp. 275–289). The MIT Press.

  23. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G. (2009). Why cumulative decomposition is not as bad as it sounds. In CP, LNCS (Vol. 5547, pp. 746–761). Springer.

  24. Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In CP, LNCS (Vol. 1520, pp. 417–431). Springer.

  25. Simonis, H. (2013). An industrial benchmark. Personal Communication.

  26. Team, C. (2010). Choco: an open source Java CP library. Research report 10-02-INFO. Ecole des Mines de Nantes. http://choco.emn.fr/.

  27. Vilím, P. (2009). Edge finding filtering algorithm for discrete cumulative resources in O(kn log n). In CP, LNCS (Vol. 5547, pp. 802–816). Springer.

  28. Vilím, P. (2011). Timetable edge finding filtering algorithm for discrete cumulative resources. In CPAIOR, LNCS (Vol. 6697, pp. 230–245). Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Carlsson.

Additional information

Partially supported by the EPOC Labex COMIN Labs project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letort, A., Carlsson, M. & Beldiceanu, N. Synchronized sweep algorithms for scalable scheduling constraints. Constraints 20, 183–234 (2015). https://doi.org/10.1007/s10601-014-9172-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-014-9172-8

Keywords

Navigation