Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Dulmage-Mendelsohn Canonical Decomposition as a generic pruning technique

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

We introduce a new generic propagation mechanism for constraint programming. A first advantage of our pruning technique stems from the fact that it can be applied on various global constraints. In this work we describe a filtering scheme for such a family based on Dulmage-Mendelsohn Structure Theorem. Our method checks the feasibility in polynomial time and then ensures hyper-arc consistency in linear time. It is also applicable to any soft version of global constraint expressed in terms of a maximum matching in a bipartite graph and remains of linear complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alt, H., Blum, N., Mehlhorn, K., & Paul, M. (1991). Computing a maximum cardinality matching in a bipartite graph in time \(O(n^{1.5} \sqrt {m / \log n})\). Information Processing Letters, 37, 237–240.

    Article  MathSciNet  MATH  Google Scholar 

  2. Beldiceanu, N., Carlsson, M., & Rampon, J.-X. (2006). Global constraint catalog. Technical Report T2005-08, Swedish Institute of Computer Science, 15 Sept 2006.

  3. Beldiceanu, N., Katriel, I., & Thiel, S. (2004). Filtering algorithms for the SAME constraint. Lecture Notes in Computer Science, 3011, 65–79.

    Article  Google Scholar 

  4. Berge, C. (1957). Two theorems in graph theory. Proceedings of the National Academy of Sciences of the United States of America, 43, 842–844.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., & Stein, C. (2001). Introduction to algorithms (2nd ed.). Cambridge, MA: MIT Press/McGraw-Hill.

    MATH  Google Scholar 

  6. Dulmage, A.L., & Mendelsohn, N.S. (1958). Coverings of bipartite graphs. Canadian Journal of Mathematics, 10, 517–534.

    Article  MathSciNet  MATH  Google Scholar 

  7. Gabow, H.N., & Tarjan, R.E. (1985). A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences, 30, 209–221.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hall, P. (1935). On representatives of subsets. Journal of the London Mathematical Society, 10, 26–30.

    Article  Google Scholar 

  9. Hell, P., & Kirkpatrick, D. G. (1993). Algorithms for degree constrained graph factors of minimum deficiency. Journal of Algorithms, 14, 115–138.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hopcroft, J. E., & Karp, R. M. (1973). An O(n 5/2) algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4), 225–231.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kocjan, W., & Kreuger, P. (2004). Filtering methods for symmetric cardinality constraint. Lecture Notes in Computer Science, 3011, 200–208.

    Article  Google Scholar 

  12. König, D. (1916). Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Mathematische Annalen, 77, 453–465.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lovász, L., & Plummer, M. D. (1986). Matching theory. Annals of discrete mathematics (29). North-Holland, Amsterdam.

  14. Norman, R. Z., & Rabin, M. O. (1959). An algorithm for a minimum cover of a graph. Proceedings of the American Mathematics Society, 10, 315–319.

    Article  MathSciNet  MATH  Google Scholar 

  15. Older, W. J., Swinkels, G. M., & van Emden, M. H. (1995). Getting to the real problem: Experience with BNR Prolog in OR. In 3rd international conference on the Practical Application of Prolog (PAP’95) (pp. 465–478). Alinmead Software Ltd.

  16. Petersen, J. (1891). Die Theorie der regulären Graphen. Acta Mathematica, 15, 193–220.

    Article  MathSciNet  MATH  Google Scholar 

  17. Petit, T., Régin, J.-C., & Bessière, C. (2001). Specific filtering algorithms for over-constrained problems. Lecture Notes in Computer Science, 2239, 451–463.

    Article  Google Scholar 

  18. Quimper, C.-G., López-Ortiz, A., van Beek, P., & Golynski, A. (2004). Improved algorithms for the global cardinality constraint. Lecture Notes in Computer Science, 3258, 542–556.

    Article  Google Scholar 

  19. Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings of the 12th national conference on Artificial Intelligence (AAAI-94) (pp. 362–367).

  20. Régin, J.-C. (1996). Generalized arc consistency for global cardinality constraint. In Proceedings of the 13th national conference on Artificial Intelligence (AAAI-96) (pp. 209–215).

  21. Tarjan, R. E. (1972). Depth first search and linear graph algorithms. SIAM Journal on Computing, 1, 146–160.

    Article  MathSciNet  MATH  Google Scholar 

  22. van Hentenryck, P., & Carillon, J.-P. (1988). Generality versus specificity: An experience with AI and OR techniques. In Proceedings of the National Conference on Artificial Intelligence (AAAI) (pp. 660–664).

  23. Zanarini, A., Milano, M., & Pesant, G. (2006). Improved algorithm for the soft global cardinality constraint. Lecture Notes in Computer Science, 3990, 288–299.

    Article  Google Scholar 

  24. Zhou, J. (1997). A permutation-based approach for solving the job-shop problem. Constraints, 2(2), 185–213.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław Cymer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cymer, R. Dulmage-Mendelsohn Canonical Decomposition as a generic pruning technique. Constraints 17, 234–272 (2012). https://doi.org/10.1007/s10601-012-9120-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-012-9120-4

Keywords

Navigation