Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Generic Incremental Algorithms for Local Search

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

When a new (global) constraint is introduced in local search, measures for the penalty and variable conflicts of that constraint must be defined, and incremental algorithms for maintaining these measures must be implemented. These are complicated and time-consuming tasks, which clearly reduces the productivity of the local-search practitioner. We introduce a generic scheme that, from a description of a constraint in monadic existential second-order logic extended with counting, automatically gives penalty and variable-conflict measures for such a constraint, as well as incremental algorithms for maintaining these measures. We prove that our variable-conflict measure for a variable x is lower-bounded by the maximum penalty decrease that may be achieved by only changing the value of x, as well as upper bounded by the penalty measure. Without these properties, the local search performance may degrade. We also demonstrate the usefulness of the approach by replacing a built-in global constraint by a modelled version, while still obtaining competitive results in terms of runtime and robustness. This is especially attractive when a particular (global) constraint is not built in.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aarts, E., & Lenstra, J. K. (Eds.) (1997). Local search in combinatorial optimization. New York: Wiley.

    MATH  Google Scholar 

  2. Ågren, M., Flener, P., & Pearson, J. (2005). Incremental algorithms for local search from existential second-order logic. In P. van Beek (Ed.), Proceedings of CP’05. LNCS (Vol. 3709, pp. 47–61). Berlin Heidelberg New York: Springer.

    Google Scholar 

  3. Ågren, M., Flener, P., & Pearson, J. (2005). Set variables and local search. In R. Barták & M. Milano (Eds.), Proceedings of CP-AI-OR’05. LNCS (Vol. 3524, pp. 19–33). Berlin Heidelberg New York: Springer.

    Google Scholar 

  4. Ågren, M., Flener, P., & Pearson, J. (2006). Inferring variable conflicts for local search. In F. Benhamou (Ed.), Proceedings of CP’06. LNCS (Vol. 4204, pp. 665–669). Berlin Heidelberg New York: Springer.

    Google Scholar 

  5. Azevedo, F., & Barahona, P. (2000). Applications of an extended set constraint solver. In Proceedings of the ERCIM / CompulogNet Workshop on Constraints.

  6. Bohlin, M. (2004). Design and Implementation of a Graph-based Constraint Model for Local Search. PhL thesis, Mälardalen University, Västerås, Sweden.

  7. Galinier, P., & Hao, J.-K. (2000). A general approach for constraint solving by local search. In Proceedings of CP-AI-OR’00.

  8. Gervet, C. (1997). Interval propagation to reason about sets: Definition and implementation of a practical language. Constraints, 1(3), 191–244.

    Article  MATH  MathSciNet  Google Scholar 

  9. Glover, F., & Laguna, M. (1993). Tabu search. In Modern Heuristic Techniques for Combinatorial Problems (pp. 70–150). New York: Wiley.

    Google Scholar 

  10. Immerman, N. (1998). Descriptive complexity. Springer.

  11. Michel, L., & Van Hentenryck, P. (1997). Localizer: A modeling language for local search. In G. Smolka (Ed.), Proceedings of CP’97. LNCS (Vol. 1330, pp. 237–251). Berlin Heidelberg New York: Springer.

    Google Scholar 

  12. Michel, L., & Van Hentenryck, P. (2002). A constraint-based architecture for local search. ACM SIGPLAN Not., 37(11), 101–110 (Proceedings of OOPSLA’02).

    Article  Google Scholar 

  13. Nareyek, A. (2001). Using global constraints for local search. In E. C. Freuder & R. J. Wallace (Eds.), Constraint programming and large scale discrete optimization. DIMACS: Series in discrete mathematics and theoretical computer science (Vol. 57, pp. 9–28). Providence, RI: American Mathematical Society.

    Google Scholar 

  14. Puget, J.-F. (1996). Finite set intervals. In Proceedings of CP’96 Workshop on Set Constraints.

  15. Smith, B. M., Brailsford, S. C., Hubbard, P. M., & Williams, H. P. (1996). The progressive party problem: Integer linear programming and constraint programming compared. Constraints, 1, 119–138.

    Article  MathSciNet  Google Scholar 

  16. Tack, G., Schulte, C., & Smolka, G. (2006). Generating propagators for finite set constraints. In F. Benhamou (Ed.), Proceedings of CP’06. LNCS (Vol. 4204, pp. 575–589). Berlin Heidelberg New York: Springer.

    Google Scholar 

  17. Van Hentenryck, P., & Michel, L. (2005). Constraint-based local search. The MIT Press.

  18. Van Hentenryck, P., & Michel, L. (2006). Differentiable invariants. In F. Benhamou (Ed.), Proceedings of CP’06. LNCS (Vol. 4204, pp. 604–619). Berlin Heidelberg New York: Springer.

    Google Scholar 

  19. Van Hentenryck, P., Michel, L., & Liu, L. (2004). Constraint-based combinators for local search. In M. Wallace (Ed.), Proceedings of CP’04. LNCS (Vol. 3258, pp. 47–61). Berlin Heidelberg New York: Springer.

    Google Scholar 

  20. Walser, J. P. (1999). Integer optimization by local search: A domain-independent approach. In LNCS (Vol. 1637). Berlin Heidelberg New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Ågren.

Additional information

Part of this work was done while Pierre Flener was a Visiting Faculty Member at Sabancı University in İstanbul, Turkey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ågren, M., Flener, P. & Pearson, J. Generic Incremental Algorithms for Local Search. Constraints 12, 293–324 (2007). https://doi.org/10.1007/s10601-007-9021-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-007-9021-0

Keywords

Navigation