Abstract
Recent several years have witnessed the surge of asynchronous (async-) parallel computing methods due to the extremely big data involved in many modern applications and also the advancement of multi-core machines and computer clusters. In optimization, most works about async-parallel methods are on unconstrained problems or those with block separable constraints. In this paper, we propose an async-parallel method based on block coordinate update (BCU) for solving convex problems with nonseparable linear constraint. Running on a single node, the method becomes a novel randomized primal–dual BCU for multi-block affinely constrained problems. For these problems, Gauss–Seidel cyclic primal–dual BCU is not guaranteed to converge to an optimal solution if no additional assumptions, such as strong convexity, are made. On the contrary, assuming convexity and existence of a primal–dual solution, we show that the objective value sequence generated by the proposed algorithm converges in probability to the optimal value and also the constraint residual to zero. In addition, we establish an ergodic O(1 / k) convergence result, where k is the number of iterations. Numerical experiments are performed to demonstrate the efficiency of the proposed method and significantly better speed-up performance than its sync-parallel counterpart.
Similar content being viewed by others
Notes
In [32], a linear convergence result is established under strong monotonicity assumption, which is similar to strong convexity in optimization.
Each epoch is equivalent to updating m\({\mathbf {x}}\)-blocks.
The data can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
References
Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, vol. 23. Prentice Hall, Englewood Cliffs (1989)
Bianchi, P., Hachem, W., Iutzeler, F.: A coordinate descent primal–dual algorithm and application to distributed asynchronous optimization. IEEE Trans. Autom. Control 61(10), 2947–2957 (2016)
Cai, X., Han, D., Yuan, X.: On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function. Comput. Optim. Appl. 66(1), 39–73 (2017)
Chang, T.-H., Hong, M., Liao, W.-C., Wang, X.: Asynchronous distributed admm for large-scale optimization—part I: algorithm and convergence analysis. IEEE Trans. Signal Process. 64(12), 3118–3130 (2016)
Chang, T.-H., Liao, W.-C., Hong, M., Wang, X.: Asynchronous distributed admm for large-scale optimization—part II: linear convergence analysis and numerical performance. IEEE Trans. Signal Process. 64(12), 3131–3144 (2016)
Chazan, D., Miranker, W.: Chaotic relaxation. Linear Algebra Appl. 2(2), 199–222 (1969)
Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Programm. 155(1–2), 57–79 (2016)
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)
Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal–dual decomposition methods for monotone inclusions. Math. Program. 168(1–2), 645–672 (2018)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set-Valued Var. Anal. 25(4), 829–858 (2017)
Deng, W., Lai, M.-J., Peng, Z., Yin, W.: Parallel multi-block ADMM with \(o(1/k)\) convergence. J. Sci. Comput. 71(2), 712–736 (2017)
Feng, J.-K., Zhang, H.-B., Cheng, C.-Z., Pei, H.-M.: Convergence analysis of L-ADMM for multi-block linear-constrained separable convex minimization problem. J. Oper. Res. Soc. China 3(4), 563–579 (2015)
Gao, X., Xu, Y., Zhang, S.: Randomized primal–dual proximal block coordinate updates. arXiv preprint arXiv:1605.05969 (2016)
Gao, X., Zhang, S.: First-order algorithms for convex optimization with nonseparable objective and coupled constraints. J. Oper. Res. Soc. China 5(2), 131–159 (2017)
Han, D., Yuan, X.: A note on the alternating direction method of multipliers. J. Optim. Theory Appl. 155(1), 227–238 (2012)
He, B., Hou, L., Yuan, X.: On full Jacobian decomposition of the augmented Lagrangian method for separable convex programming. SIAM J. Optim. 25(4), 2274–2312 (2015)
He, B., Tao, M., Yuan, X.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22(2), 313–340 (2012)
He, B., Tao, M., Yuan, X.: Convergence rate analysis for the alternating direction method of multipliers with a substitution procedure for separable convex programming. Math. Oper. Res. 42(3), 662–691 (2017)
Hong, M., Chang, T.-H., Wang, X., Razaviyayn, M., Ma, S., Luo, Z.-Q.: A block successive upper bound minimization method of multipliers for linearly constrained convex optimization. arXiv preprint arXiv:1401.7079 (2014)
Hong, M., Wang, X., Razaviyayn, M., Luo, Z.-Q.: Iteration complexity analysis of block coordinate descent methods. Math. Program. 163(1–2), 85–114 (2017)
James, G.M., Paulson, C., Rusmevichientong, P.: Penalized and Constrained Regression. Technical report (2013)
Li, M., Sun, D., Toh, K.-C.: A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block. Asia-Pac. J. Oper. Res. 32(04), 1550024 (2015)
Li, X., Sun, D., Toh, K.-C.: A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155(1–2), 333–373 (2016)
Lin, T., Ma, S., Zhang, S.: On the global linear convergence of the ADMM with multiblock variables. SIAM J. Optim. 25(3), 1478–1497 (2015)
Lin, T., Ma, S., Zhang, S.: On the sublinear convergence rate of multi-block ADMM. J. Oper. Res. Soc. China 3(3), 251–274 (2015)
Liu, J., Wright, S.J.: Asynchronous stochastic coordinate descent: parallelism and convergence properties. SIAM J. Optim. 25(1), 351–376 (2015)
Liu, J., Wright, S.J., Ré, C., Bittorf, V., Sridhar, S.: An asynchronous parallel stochastic coordinate descent algorithm. J. Mach. Learn. Res. 16, 285–322 (2015)
Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)
Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341–362 (2012)
Peng, Z., Wu, T., Xu, Y., Yan, M., Yin, W.: Coordinate friendly structures, algorithms and applications. Ann. Math. Sci. Appl. 1(1), 57–119 (2016)
Peng, Z., Xu, Y., Yan, M., Yin, W.: ARock: an algorithmic framework for asynchronous parallel coordinate updates. SIAM J. Sci. Comput. 38(5), A2851–A2879 (2016)
Peng, Z., Xu, Y., Yan, M., Yin, W.: On the convergence of asynchronous parallel iteration with arbitrary delays. arXiv preprint arXiv:1612.04425 (2016)
Razaviyayn, M., Hong, M., Luo, Z.-Q.: A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2013)
Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: a lock-free approach to parallelizing stochastic gradient descent. In: Advances in Neural Information Processing Systems, pp. 693–701 (2011)
Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1–2), 1–38 (2014)
Sun, D., Toh, K.-C., Yang, L.: A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25(2), 882–915 (2015)
Sun, R., Luo, Z.-Q., Ye, Y.: On the expected convergence of randomly permuted ADMM. arXiv preprint arXiv:1503.06387 (2015)
Tseng, P.: On the rate of convergence of a partially asynchronous gradient projection algorithm. SIAM J. Optim. 1(4), 603–619 (1991)
Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)
Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117(1–2), 387–423 (2009)
Wei, E., Ozdaglar, A.: On the \(o (1/ k)\) convergence of asynchronous distributed alternating direction method of multipliers. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 551–554 (2013)
WhiteHouse. Big Data: Seizing Opportunities Preserving Values (2014)
Xu, Y.: Hybrid Jacobian and Gauss–Seidel proximal block coordinate update methods for linearly constrained convex programming. SIAM J. Optim. 28(1), 646–670 (2018)
Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)
Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. J. Sci. Comput. 72(2), 700–734 (2017)
Zeng, Z.-Q., Yu, H.-B., Xu, H.-R., Xie, Y.-Q., Gao, J.: Fast training support vector machines using parallel sequential minimal optimization. In: Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd International Conference on, vol. 1, pp. 997–1001. IEEE (2008)
Zhang, R., Kwok, J.: Asynchronous distributed ADMM for consensus optimization. In: International Conference on Machine Learning, pp. 1701–1709 (2014)
Zhang, Y., Yang, J., Yin, W.: YALL1: your algorithms for \(l_1\). Online at yall1.blogs.rice.edu (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is partly supported by NSF Grant DMS-1719549.
Rights and permissions
About this article
Cite this article
Xu, Y. Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs. Comput Optim Appl 72, 87–113 (2019). https://doi.org/10.1007/s10589-018-0037-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-018-0037-8