Abstract
In this paper we propose an alternating block version of a variable metric linesearch proximal gradient method. This algorithm addresses problems where the objective function is the sum of a smooth term, whose variables may be coupled, plus a separable part given by the sum of two or more convex, possibly nonsmooth functions, each depending on a single block of variables. Our approach is characterized by the possibility of performing several proximal gradient steps for updating every block of variables and by the Armijo backtracking linesearch for adaptively computing the steplength parameter. Under the assumption that the objective function satisfies the Kurdyka-Łojasiewicz property at each point of its domain and the gradient of the smooth part is locally Lipschitz continuous, we prove the convergence of the iterates sequence generated by the method. Numerical experience on an image blind deconvolution problem show the improvements obtained by adopting a variable number of inner block iterations combined with a variable metric in the computation of the proximal operator.
Similar content being viewed by others
References
Abboud, F., Chouzenoux, E., Pesquet, J.C., Chenot, J.H., Laborelli, L.: Dual block coordinate forward–backward algorithm with application to deconvolution and deinterlacing of video sequences. J. Math. Imaging Vis. 59(3), 415–431 (2017)
Almeida, M.S.C., Almeida, L.B.: Blind and semi-blind deblurring of natural images. IEEE Trans. Image Process. 19(1), 36–52 (2010)
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1–2), 5–16 (2009)
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)
Ayers, G.R., Dainty, J.C.: Iterative blind deconvolution method and its applications. Opt. Lett. 13(7), 547–549 (1988)
Bauschke, H.H., Bolte, J., Teboulle, M.: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Math. Oper. Res. 4(1), 330–348 (2016)
Bertero, M., Bindi, D., Boccacci, P., Cattaneo, M., Eva, C., Lanza, V.: A novel blind-deconvolution method with an application to seismology. Inverse Probl. 14(4), 815–833 (1998)
Bertero, M., Boccacci, P., Desiderà, G., Vicidomini, G.: Image deblurring with Poisson data: from cells to galaxies. Inverse Probl. 25(12), 123006 (2009)
Bertero, M., Lantéri, H., Zanni, L.: Iterative image reconstruction: a point of view. In: Censor, Y., Jiang, M., Louis, A.K. (eds.) Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), pp. 37–63. Birkhauser, Pisa (2008)
Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont (1999)
Bolte, J., Combettes, P.L., Pesquet, J.C.: Alternating proximal algorithm for blind image recovery. In: Proceedings of the 17th International Conference on Image Processing, pp. 1673–1676 (2010)
Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010)
Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)
Bonettini, S.: Inexact block coordinate descent methods with application to the nonnegative matrix factorization. IMA J. Numer. Anal. 31(4), 1431–1452 (2011)
Bonettini, S., Cornelio, A., Prato, M.: A new semiblind deconvolution approach for Fourier-based image restoration: an application in astronomy. SIAM J. Imaging Sci. 6(3), 1736–1757 (2013)
Bonettini, S., Loris, I., Porta, F., Prato, M.: Variable metric inexact line-search based methods for nonsmooth optimization. SIAM J. Optim. 26(2), 891–921 (2016)
Bonettini, S., Loris, I., Porta, F., Prato, M., Rebegoldi, S.: On the convergence of a linesearch based proximal-gradient method for nonconvex optimization. Inverse Probl. 33(5), 055005 (2017)
Bonettini, S., Prato, M.: New convergence results for the scaled gradient projection method. Inverse Probl. 31(9), 095008 (2015)
Bonettini, S., Prato, M., Rebegoldi, S.: A cyclic block coordinate descent method with generalized gradient projections. Appl. Math. Comput. 286, 288–300 (2016)
Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Probl. 25(1), 015002 (2009)
Cassioli, A., Di Lorenzo, D., Sciandrone, M.: On the convergence of inexact block coordinate descent methods for constrained optimization. Eur. J. Oper. Res. 231(2), 274–281 (2013)
Chambolle, A., Dossal, C.: On the convergence of the iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm”. J. Optim. Theory Appl. 166(3), 968–982 (2015)
Chouzenoux, E., Pesquet, J.C.: A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation. IEEE Trans. Signal Process. 65(18), 4770–4783 (2017)
Chouzenoux, E., Pesquet, J.C., Repetti, A.: Variable metric forward–backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014)
Chouzenoux, E., Pesquet, J.C., Repetti, A.: A block coordinate variable metric forward–backward algorithm. J. Glob. Optim. 66(3), 457–485 (2016)
Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications, pp. 185–212. Springer, New York (2011)
Cornelio, A., Porta, F., Prato, M.: A convergent least-squares regularized blind deconvolution approach. Appl. Math. Comput. 259, 173–186 (2015)
Fessler, J.A., Erdogan, H.: A paraboloidal surrogates algorithm for convergent penalized–likelihood emission image reconstruction. In: 1998 IEEE Nuclear Science Symposium Conference Record, pp. 1132–1135 (1998)
Frankel, P., Garrigos, G., Peypouquet, J.: Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates. J. Opt. Theory Appl. 165(3), 874–900 (2015)
Grippo, L., Sciandrone, M.: Globally convergent block-coordinate techniques for unconstrained optimization. Optim. Method Softw. 10(4), 587–637 (1999)
Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)
Harmany, Z., Marcia, R., Willett, R.: This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms—theory and practice. IEEE Trans. Image Process. 21(3), 1084–1096 (2012)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, New York (1993)
Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48(3), 769–783 (1998)
Lantéri, H., Roche, M., Cuevas, O., Aime, C.: A general method to devise maximum likelihood signal restoration multiplicative algorithms with non-negativity constraints. Signal Process. 81(5), 945–974 (2001)
Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562. MIT Press (2000)
Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)
Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In: Les Équations aux Dérivées Partielles, pp. 87–89. Éditions du Centre National de la Recherche Scientifique, Paris (1963)
Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astronom. J. 79(6), 745–754 (1974)
Noll, D.: Convergence of non-smooth descent methods using the Kurdyka-Łojasiewicz inequality. J. Opt. Theory Appl. 160(2), 553–572 (2014)
Ochs, P.: Unifying abstract inexact convergence theorems for descent methods and block coordinate variable metric iPiano (2016). arXiv:1602.07283
Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for non-convex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)
Porta, F., Loris, I.: On some steplength approaches for proximal algorithms. Appl. Math. Comput. 253, 345–362 (2015)
Prato, M., Camera, A.L., Bonettini, S., Bertero, M.: A convergent blind deconvolution method for post-adaptive-optics astronomical imaging. Inverse Probl. 29(6), 065017 (2013)
Prato, M., Cavicchioli, R., Zanni, L., Boccacci, P., Bertero, M.: Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes. Astron. Astrophys. 539, A133 (2012)
Prato, M., La Camera, A., Bonettini, S., Rebegoldi, S., Bertero, M., Boccacci, P.: A blind deconvolution method for ground based telescopes and Fizeau interferometers. New Astron. 40, 1–13 (2015)
Razaviyayn, M., Hong, M., Luo, Z.Q.: A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2013)
Rockafellar, R.T., Wets, R.J.B., Wets, M.: Variational Analysis. Springer, Berlin (1998)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. J. Phys. D. 60(1–4), 259–268 (1992)
Salzo, S.: The variable metric forward–backward splitting algorithm under mild differentiability assumptions. SIAM J. Optim. 27(4), 2153–2181 (2017)
Salzo, S., Villa, S.: Inexact and accelerated proximal point algorithms. J. Convex Anal. 19(4), 1167–1192 (2012)
Shen, X., Diamond, S., Udell, M., Gu, Y., Boyd, S.: Disciplined multi-convex programming (2016). arXiv:1609.03285
Staglianò, A., Boccacci, P., Bertero, M.: Analysis of an approximate model for Poisson data reconstruction and a related discrepancy principle. Inverse Probl. 27(12), 125003 (2011)
Tikhonov, N.A., Arsenin, V.Y.: Solution of Ill Posed Problems. Wiley, New York (1977)
Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117(1–2), 387–423 (2009)
Villa, S., Salzo, S., Baldassarre, L., Verri, A.: Accelerated and inexact forward–backward algorithms. SIAM J. Optim. 23(3), 1607–1633 (2013)
Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)
Zalinescu, A.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by MIUR under the Project FIRB Futuro in Ricerca 2012, Contract RBFR12M3AC. The Italian GNCS-INdAM is also acknowledged.
Rights and permissions
About this article
Cite this article
Bonettini, S., Prato, M. & Rebegoldi, S. A block coordinate variable metric linesearch based proximal gradient method. Comput Optim Appl 71, 5–52 (2018). https://doi.org/10.1007/s10589-018-0011-5
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-018-0011-5