Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Nonconvex bundle method with application to a delamination problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Delamination is a typical failure mode of composite materials caused by weak bonding. It arises when a crack initiates and propagates under a destructive loading. Given the physical law characterizing the properties of the interlayer adhesive between the bonded bodies, we consider the problem of computing the propagation of the crack front and the stress field along the contact boundary. This leads to a hemivariational inequality, which after discretization by finite elements we solve by a nonconvex bundle method, where upper-\(C^1\) criteria have to be minimized. As this is in contrast with other classes of mechanical problems with non-monotone friction laws and in other applied fields, where criteria are typically lower-\(C^1\), we propose a bundle method suited for both types of nonsmoothness. We prove its global convergence in the sense of subsequences and test it on a typical delamination problem of material sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Apkarian, P., Noll, D.: Nonsmooth \(H_{\infty }\) synthesis. IEEE Trans. Automat. Control 51(1), 71–86 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apkarian, P., Noll, D., Prot, O.: A trust region spectral bundle method for nonconvex eigenvalue optimization. SIAM J. Optim. 19(1), 281–306 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Mod. Birkhäuser Class. Birkhäuser Boston, Boston (2009)

    Book  Google Scholar 

  4. Baniotopoulos, C.C., Haslinger, J., Morávková, Z.: Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities. Appl. Math. 50(1), 1–25 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cullum, J., Donath, W.E., Wolfe, P.: The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices. In: Balinski, M.L., Wolfe, P. (eds.) Nondifferentiable Optimization, Math. Programming Stud., vol. 3, pp. 35–55. North-Holland, Amsterdam (1975)

    Chapter  Google Scholar 

  6. Daniilidis, A., Georgiev, P.: Approximate convexity and submonotonicity. J. Math. Anal. Appl. 291(1), 292–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daniilidis, A., Malick, J.: Filling the gap between lower-\(C^1\) and lower-\(C^2\) functions. J. Convex Anal. 12(2), 315–329 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Dao, M.N., Noll, D.: Minimizing memory effects of a system. Math. Control Signals Syst. 27(1), 77–110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dao, M.N., Noll, D., Apkarian, P.: Robust eigenstructure clustering by non-smooth optimisation. Int. J. Control 88(8), 1441–1455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Book  MATH  Google Scholar 

  11. Gwinner, J.: Finite-element convergence for contact problems in plane linear elastostatics. Quart. Appl. Math. 50(1), 11–25 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Gwinner, J.: \(hp\)-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. J. Comput. Appl. Math. 254, 175–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Program. Ser. B 116(1–2), 221–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. 63(1), 1–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications, Nonconvex Optim. Appl., vol. 35. Kluwer Academic, Dordrecht (1999)

    MATH  Google Scholar 

  16. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, Vol. I. Fundamentals, Vol. II. Advanced Theory and Bundle Methods, Grundlehren Math. Wiss., vol. 305-306. Springer, Berlin (1993)

    Google Scholar 

  17. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988)

    Book  MATH  Google Scholar 

  18. Kiwiel, K.C.: An aggregate subgradient method for nonsmooth convex minimization. Math. Program. 27(3), 320–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Math., vol. 1133. Springer, Berlin (1985)

  20. Kiwiel, K.C.: A proximal bundle method with approximate subgradient linearizations. SIAM J. Optim. 16(4), 1007–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kovtunenko, V.A.: A hemivariational inequality in crack problems. Optimization 60(8–9), 1071–1089 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lemaréchal, C.: Bundle methods in nonsmooth optimization. In: Lemaréchal, C., Mifflin, R. (eds.) Nonsmooth Optimization (Laxenburg, 1977), IIASA Proc. Ser., vol. 3, pp. 79–102. Pergamon Press, Oxford (1978)

  23. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable forms. Math. Program., Ser. B 76(3), 393–410 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program., Ser. A 83(3), 373–391 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Mäkelä, M.M., Miettinen, M., Lukšan, L., Vlček, J.: Comparing nonsmooth nonconvex bundle methods in solving hemivariational inequalities. J. Global Optim. 14(2), 117–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific, Singapore (1992)

    Book  MATH  Google Scholar 

  27. Miettinen, M., Mäkelä, M.M., Haslinger, J.: On numerical solution of hemivariational inequalities by nonsmooth optimization methods. J. Global Optim. 6(4), 401–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15(6), 959–972 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mifflin, R.: A modification and extension of Lemarechal’s algorithm for nonsmooth minimization. In: Sorensen, D.C., Wets, R.J.B. (eds.) Nondifferential and Variational Techniques in Optimization (Lexington, 1980), Math. Programming Stud., vol. 17, pp. 77–90. North-Holland, Amsterdam (1982)

  30. Ngai, H.V., Luc, D.T., Théra, M.: Approximate convex functions. J. Nonlinear Convex Anal. 1(2), 155–176 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Noll, D.: Cutting plane oracles to minimize non-smooth non-convex functions. Set-Valued Var. Anal. 18(3–4), 531–568 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Noll, D.: Bundle method for non-convex minimization with inexact subgradients and function values. In: D.H.B. et al. (ed.) Computational and Analytical Mathematics, Springer Proc. Math. Stat., vol. 50, pp. 555–592. Springer, New York (2013)

  33. Noll, D.: Convergence of non-smooth descent methods using the Kurdyka-Łojasiewicz inequality. J. Optim. Theory Appl. 160(2), 553–572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Noll, D., Prot, O., Rondepierre, A.: A proximity control algorithm to minimize nonsmooth and nonconvex functions. Pac. J. Optim. 4(3), 571–604 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Ovcharova, N.: Regularization methods and finite element approximation of hemivariational inequalities with applications to nonmonotone contact problems. Cuvillier Verlag, Göttingen. Ph.D. Thesis, Universität der Bundeswehr München (2012)

  36. Ovcharova, N., Gwinner, J.: A study of regularization techniques of nondifferentiable optimization in view of application to hemivariational inequalities. J. Optim. Theory Appl. 162(3), 754–778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348(5), 1805–1838 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Qi, L., Shapiro, A., Ling, C.: Differentiability and semismoothness properties of integral functions and their applications. Math. Program. Ser. A 102(2), 223–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  40. Ruszczyński, A.: Nonlinear Optimization. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  41. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Spingarn, J.E.: Submonotone subdifferentials of Lipschitz functions. Trans. Am. Math. Soc. 264(1), 77–89 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wetzel, M., Holtmannspötter, J., Gudladt, H.J., Czarnecki, J.V.: Sensitivity of double cantilever beam test to surface contamination and surface pretreatment. Int. J. Adhes. Adhes. 46, 114–121 (2013)

    Article  Google Scholar 

  44. Zowe, J.: The BT-algorithm for minimizing a nonsmooth functional subject to linear constraints. In: Clarke, F.H., Dem’yanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics (Erice, 1988), Ettore Majorana Internat. Sci. Ser. Phys. Sci., vol. 43, pp. 459–480. Plenum Press, New York (1989)

Download references

Acknowledgments

The authors thank H.-J. Gudladt for many useful discussions. The authors were partially supported by Bayerisch-Französisches Hochschulzentrum (BFHZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh N. Dao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, M.N., Gwinner, J., Noll, D. et al. Nonconvex bundle method with application to a delamination problem. Comput Optim Appl 65, 173–203 (2016). https://doi.org/10.1007/s10589-016-9834-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-016-9834-0

Keywords

Navigation