Abstract
Delamination is a typical failure mode of composite materials caused by weak bonding. It arises when a crack initiates and propagates under a destructive loading. Given the physical law characterizing the properties of the interlayer adhesive between the bonded bodies, we consider the problem of computing the propagation of the crack front and the stress field along the contact boundary. This leads to a hemivariational inequality, which after discretization by finite elements we solve by a nonconvex bundle method, where upper-\(C^1\) criteria have to be minimized. As this is in contrast with other classes of mechanical problems with non-monotone friction laws and in other applied fields, where criteria are typically lower-\(C^1\), we propose a bundle method suited for both types of nonsmoothness. We prove its global convergence in the sense of subsequences and test it on a typical delamination problem of material sciences.
Similar content being viewed by others
References
Apkarian, P., Noll, D.: Nonsmooth \(H_{\infty }\) synthesis. IEEE Trans. Automat. Control 51(1), 71–86 (2006)
Apkarian, P., Noll, D., Prot, O.: A trust region spectral bundle method for nonconvex eigenvalue optimization. SIAM J. Optim. 19(1), 281–306 (2008)
Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Mod. Birkhäuser Class. Birkhäuser Boston, Boston (2009)
Baniotopoulos, C.C., Haslinger, J., Morávková, Z.: Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities. Appl. Math. 50(1), 1–25 (2005)
Cullum, J., Donath, W.E., Wolfe, P.: The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices. In: Balinski, M.L., Wolfe, P. (eds.) Nondifferentiable Optimization, Math. Programming Stud., vol. 3, pp. 35–55. North-Holland, Amsterdam (1975)
Daniilidis, A., Georgiev, P.: Approximate convexity and submonotonicity. J. Math. Anal. Appl. 291(1), 292–301 (2004)
Daniilidis, A., Malick, J.: Filling the gap between lower-\(C^1\) and lower-\(C^2\) functions. J. Convex Anal. 12(2), 315–329 (2005)
Dao, M.N., Noll, D.: Minimizing memory effects of a system. Math. Control Signals Syst. 27(1), 77–110 (2015)
Dao, M.N., Noll, D., Apkarian, P.: Robust eigenstructure clustering by non-smooth optimisation. Int. J. Control 88(8), 1441–1455 (2015)
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
Gwinner, J.: Finite-element convergence for contact problems in plane linear elastostatics. Quart. Appl. Math. 50(1), 11–25 (1992)
Gwinner, J.: \(hp\)-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. J. Comput. Appl. Math. 254, 175–184 (2013)
Hare, W., Sagastizábal, C.: Computing proximal points of nonconvex functions. Math. Program. Ser. B 116(1–2), 221–258 (2009)
Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. 63(1), 1–28 (2016)
Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications, Nonconvex Optim. Appl., vol. 35. Kluwer Academic, Dordrecht (1999)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, Vol. I. Fundamentals, Vol. II. Advanced Theory and Bundle Methods, Grundlehren Math. Wiss., vol. 305-306. Springer, Berlin (1993)
Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988)
Kiwiel, K.C.: An aggregate subgradient method for nonsmooth convex minimization. Math. Program. 27(3), 320–341 (1983)
Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Math., vol. 1133. Springer, Berlin (1985)
Kiwiel, K.C.: A proximal bundle method with approximate subgradient linearizations. SIAM J. Optim. 16(4), 1007–1023 (2006)
Kovtunenko, V.A.: A hemivariational inequality in crack problems. Optimization 60(8–9), 1071–1089 (2011)
Lemaréchal, C.: Bundle methods in nonsmooth optimization. In: Lemaréchal, C., Mifflin, R. (eds.) Nonsmooth Optimization (Laxenburg, 1977), IIASA Proc. Ser., vol. 3, pp. 79–102. Pergamon Press, Oxford (1978)
Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable forms. Math. Program., Ser. B 76(3), 393–410 (1997)
Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program., Ser. A 83(3), 373–391 (1998)
Mäkelä, M.M., Miettinen, M., Lukšan, L., Vlček, J.: Comparing nonsmooth nonconvex bundle methods in solving hemivariational inequalities. J. Global Optim. 14(2), 117–135 (1999)
Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific, Singapore (1992)
Miettinen, M., Mäkelä, M.M., Haslinger, J.: On numerical solution of hemivariational inequalities by nonsmooth optimization methods. J. Global Optim. 6(4), 401–425 (1995)
Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15(6), 959–972 (1977)
Mifflin, R.: A modification and extension of Lemarechal’s algorithm for nonsmooth minimization. In: Sorensen, D.C., Wets, R.J.B. (eds.) Nondifferential and Variational Techniques in Optimization (Lexington, 1980), Math. Programming Stud., vol. 17, pp. 77–90. North-Holland, Amsterdam (1982)
Ngai, H.V., Luc, D.T., Théra, M.: Approximate convex functions. J. Nonlinear Convex Anal. 1(2), 155–176 (2000)
Noll, D.: Cutting plane oracles to minimize non-smooth non-convex functions. Set-Valued Var. Anal. 18(3–4), 531–568 (2010)
Noll, D.: Bundle method for non-convex minimization with inexact subgradients and function values. In: D.H.B. et al. (ed.) Computational and Analytical Mathematics, Springer Proc. Math. Stat., vol. 50, pp. 555–592. Springer, New York (2013)
Noll, D.: Convergence of non-smooth descent methods using the Kurdyka-Łojasiewicz inequality. J. Optim. Theory Appl. 160(2), 553–572 (2014)
Noll, D., Prot, O., Rondepierre, A.: A proximity control algorithm to minimize nonsmooth and nonconvex functions. Pac. J. Optim. 4(3), 571–604 (2008)
Ovcharova, N.: Regularization methods and finite element approximation of hemivariational inequalities with applications to nonmonotone contact problems. Cuvillier Verlag, Göttingen. Ph.D. Thesis, Universität der Bundeswehr München (2012)
Ovcharova, N., Gwinner, J.: A study of regularization techniques of nondifferentiable optimization in view of application to hemivariational inequalities. J. Optim. Theory Appl. 162(3), 754–778 (2014)
Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348(5), 1805–1838 (1996)
Qi, L., Shapiro, A., Ling, C.: Differentiability and semismoothness properties of integral functions and their applications. Math. Program. Ser. A 102(2), 223–248 (2005)
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)
Ruszczyński, A.: Nonlinear Optimization. Princeton University Press, Princeton (2006)
Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152 (1992)
Spingarn, J.E.: Submonotone subdifferentials of Lipschitz functions. Trans. Am. Math. Soc. 264(1), 77–89 (1981)
Wetzel, M., Holtmannspötter, J., Gudladt, H.J., Czarnecki, J.V.: Sensitivity of double cantilever beam test to surface contamination and surface pretreatment. Int. J. Adhes. Adhes. 46, 114–121 (2013)
Zowe, J.: The BT-algorithm for minimizing a nonsmooth functional subject to linear constraints. In: Clarke, F.H., Dem’yanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics (Erice, 1988), Ettore Majorana Internat. Sci. Ser. Phys. Sci., vol. 43, pp. 459–480. Plenum Press, New York (1989)
Acknowledgments
The authors thank H.-J. Gudladt for many useful discussions. The authors were partially supported by Bayerisch-Französisches Hochschulzentrum (BFHZ).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dao, M.N., Gwinner, J., Noll, D. et al. Nonconvex bundle method with application to a delamination problem. Comput Optim Appl 65, 173–203 (2016). https://doi.org/10.1007/s10589-016-9834-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-016-9834-0