Abstract
We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid method can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. It is indicated that the method scales well with the dimension of the distribution—especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.
Similar content being viewed by others
References
Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004). doi:10.1017/S0962492904000182
Casey, M., Sen, S.: The scenario generation algorithm for multistage stochastic linear programming. Math. Oper. Res. 30, 615–631 (2005)
Chen, M., Mehrotra, S.: Epi-convergent scenario generation method for stochastic problems via sparse grid. Tech. rep., Northwestern University (2007). http://edoc.hu-berlin.de/series/speps/2008-7/PDF/7.pdf
Consigli, G., Dupačová, J., Wallace, S.: Generating scenarios for multistage stochastic programs. Ann. Oper. Res. 100, 25–53 (2000)
Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic Press, San Diego (1975)
Dempster, M.A.H., Thompson, R.T.: EVPI-based importance sampling solution procedure for multistage stochastic linear programming on parallel MIMD architectures. Ann. Oper. Res. 90, 161–184 (1999)
Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Cambridge University Press, Cambridge (2010)
Donohue, C.: Stochastic network programming and the dynamic vehicle allocation problem. Ph.D. thesis, The University of Michigan, Ann Arbor (1996)
Donohue, C.J., Birge, J.R.: The abridged nested decomposition method for multistage stochastic linear programs with relatively complete recourse. Algorithmic Oper.Res. 1, 20–30 (2006)
Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. 95, 493–511 (2003)
Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)
Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley, Hoboken (1999)
Genz, A., Keister, B.: Fully symmetric interpolatory rules for multiple integrals over infinite regions with gaussian weight. J. Comput. Appl. Math. 71(2), 299–309 (1996). doi:10.1016/0377-0427(95)00232-4
Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998)
Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids. J. Econom. 144(1), 62–80 (2008). doi:10.1016/j.jeconom.2007.12.004
Heitsch, H., Römisch, W.: Scenario tree modeling for multistage stochastic programs. Math. Program. 118(2), 371–406 (2007). doi:10.1007/s10107-007-0197-2
Hinrichs, A., Novak, E., Ullrich, M., Wozniakowski, H.: The curse of dimensionality for numerical integration of smooth functions. Math. Comput. 83, 2853–2863 (2014)
Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for stochastic programming. Pac. J. Optim. 2, 257–271 (2007)
King, A.J., Wets, R.J.B.: Epi-consistency of convex stochastic programs. Stoch. Stoch. Rep. 34, 83–92 (1991)
Krylov, V.I.: Approximate Calculation of Integrals. Dover, Mineola (2005)
Kuo, F.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complex. 19(3), 301–320 (2003). doi:10.1016/S0885-064X(03)00006-2. http://www.sciencedirect.com/science/article/pii/S0885064X03000062
L’Ecuyer, P., Munger, D.: LatticeBuilder: A general software tool for constructing rank-1 lattice rules. Submitted (2012). Software downloadable from http://www.iro.umontreal.ca/simardr/latbuilder/latbuilder.html
L’Ecuyer, P., Munger, D.: On figures of merit for randomly-shifted lattice rules. In: Wozniakowski, H., Plaskota, L. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 133–159. Springer, Berlin (2012)
Mehrotra, S., Papp, D.: Generating nested quadrature formulas for general weight functions with known moments. Tech. Rep. arXiv:1203.1554v1 [math.NA], Northwestern University (2012). http://arxiv.org/abs/1203.1554v1
Mehrotra, S., Papp, D.: Generating moment matching scenarios using optimization techniques. SIAM J. Optim. 23(2), 963–999 (2013). doi:10.1137/110858082
Monegato, G.: Stieltjes polynomials and related quadrature rules. SIAM Rev. 24(2), 137–158 (1982)
Neumaier, A.: Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2001)
Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia (1992)
Niederreiter, H., Talay, D. (eds.): Monte Carlo and Quasi-Monte Carlo Methods. Springer, Berlin (2006)
Norkin, V., Pflug, G., Ruszczyński, A.: A branch and bound method for stochastic global optimization. Math. Program. 83, 425–450 (1998). doi:10.1007/BF02680569
Novak, E., Ritter, K.: High dimensional integration of smooth functions over cubes. Numer. Math. 75, 79–97 (1996)
Novak, E., Ritter, K.: Simple cubature formulas with high polynomial exactness. Constr. Approx. 15, 499–522 (1999)
Patterson, T.N.L.: The optimal addition of points to quadrature formulae. Math. Comput. 22(104), 847–856 (1968)
Patterson, T.N.L.: An algorithm for generating interpolatory quadrature rules of the highest degree of precision with preassigned nodes for general weight functions. ACM Trans. Math. Softw. 15, 123–136 (1989). doi:10.1145/63522.63523
Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30, 245–256 (2005)
Pennanen, T., Koivu, M.: Integration quadrature in discretization of stochastic programs. Stoch. Program. E-Print Series (2002–11)
Pennanen, T., Koivu, M.: Epi-convergent discretizations of stochastic programs via integration quadratures. Numer. Math. 100, 141–163 (2005). doi:10.1007/s00211-004-0571-4
Pflug, G.C.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. 89, 251–271 (2001)
Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2(3), 21–41 (2000)
Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1986)
Smoljak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)
Sobol, I.M.: A Primer for the Monte Carlo Method. CRC Press, Boca Raton (1994)
Wallace, S.W., Ziemba, W.T. (eds.): Applications Of Stochastic Programming. Society for Industrial and Applied Mathematics, Philadelphia (2005)
Wasilkowski, G.W., Wozniakowski, H.: Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complex. 11(1), 1–56 (1995)
Acknowledgments
Research supported in part by Grants DOE DE-FG02-10ER26037, SC0005102; DOE-SP0011568; and ONR N00014210051. We thank David Munger for the discussion on optimal lattice rules for smooth integrands and the help with his LatticeBuilder software. We also thank the associate editor and the referees for the constructive suggestions that helped improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, M., Mehrotra, S. & Papp, D. Scenario generation for stochastic optimization problems via the sparse grid method. Comput Optim Appl 62, 669–692 (2015). https://doi.org/10.1007/s10589-015-9751-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-015-9751-7