Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Tightening a copositive relaxation for standard quadratic optimization problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We focus in this paper the problem of improving the semidefinite programming (SDP) relaxations for the standard quadratic optimization problem (standard QP in short) that concerns with minimizing a quadratic form over a simplex. We first analyze the duality gap between the standard QP and one of its SDP relaxations known as “strengthened Shor’s relaxation”. To estimate the duality gap, we utilize the duality information of the SDP relaxation to construct a graph G . The estimation can be then reduced to a two-phase problem of enumerating first all the minimal vertex covers of G and solving next a family of second-order cone programming problems. When there is a nonzero duality gap, this duality gap estimation can lead to a strictly tighter lower bound than the strengthened Shor’s SDP bound. With the duality gap estimation improving scheme, we develop further a heuristic algorithm for obtaining a good approximate solution for standard QP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher, K.M., Burer, S.: D. C. versus copositive bounds for standard QP. J. Glob. Optim. 33, 299–312 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. 124, 33–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bomze, I.M.: On standard quadratic optimization problems. J. Glob. Optim. 13, 369–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bomze, I.M., De Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24(2), 163–185 (2002)

    Article  MATH  Google Scholar 

  5. Bomze, I.M., Dür, M., De Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

    Article  MATH  Google Scholar 

  6. Bomze, I.M., Locatelli, M., Tardella, F.: New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability. Math. Program. 115, 31–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dukanovic, I., Rendl, F.: Copositive programming motivated bounds on the stability and the chromatic numbers. Math. Program. 121, 249–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grant, M., Boyd, S.C.V.: Matlab software for disciplined convex programming, version 1. 21 (2010). http://cvxr.com/cvx

  9. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  10. Laurent, M., Rendl, F.: Semidefinite programming and integer programming. In: Weismantel, R., Aardal, K., Nemhauser, G. (eds.) Handbook on Discrete Optimization, pp. 393–514. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  11. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979)

    Article  MATH  Google Scholar 

  12. Luz, C., Schrijver, A.: A convex quadratic characterization of the Lovász theta number. SIAM J. Discrete Math. 19(2), 382–387 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maxfield, J.E., Minc, H.: On the matrix equation X′X=A. Proc. Edinb. Math. Soc. 13, 125–129 (1963)

    Article  MathSciNet  Google Scholar 

  14. McEliece, R.J., Rodemich, E.R., Rumsey, H.C.: The Lovász’ bound and some generalizations. J. Comb. Inf. Syst. Sci. 3, 134–152 (1978)

    MathSciNet  MATH  Google Scholar 

  15. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  16. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17, 533–540 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nesterov, Y., Nemirovsky, A.: Interior-Point Polynomial Methods in Convex Programming. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  18. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, CA (2000)

  19. Rosgen, B., Stewart, L.: Complexity results on graphs with few cliques. Discrete Math. Theor. Comput. Sci. 9, 127–136 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Schrijver, A.: A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inf. Theory 25, 425–429 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, X.L., Liu, C.L., Li, D., Gao, J.J.: On duality gap in binary quadratic programming. J. Glob. Optim. 53, 255–269 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xia, Y., Sun, X.L., Li, D., Zheng, X.J.: On the reduction of duality gap in box constrained nonconvex quadratic program. SIAM J. Optim. 21, 706–729 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zheng, X.J., Sun, X.L., Li, D., Xia, Y.: Duality gap estimation of linear equality constrained binary quadratic programming. Math. Oper. Res. 35, 864–880 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two anonymous referees for their valuable comments and suggestions that have greatly helped the authors improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-Lin Sheu.

Additional information

This research was supported by Taiwan NSC 98-2115-M-006-010-MY2, by National Center for Theoretical Sciences of Taiwan(South), by Research Grants Council of Hong Kong under grants 414207, 414808 and 414610, by National Natural Science Foundation of China under grants 10971034, 70832002 and 11001006, by the fund of State Key Laboratory of Software Development Environment under grant SKLSDE-2011ZX-15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Sheu, RL., Sun, X. et al. Tightening a copositive relaxation for standard quadratic optimization problems. Comput Optim Appl 55, 379–398 (2013). https://doi.org/10.1007/s10589-012-9522-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9522-7

Keywords

Navigation