Abstract
By means of a gradient strategy, the Moreau-Yosida regularization, limited memory BFGS update, and proximal method, we propose a trust-region method for nonsmooth convex minimization. The search direction is the combination of the gradient direction and the trust-region direction. The global convergence of this method is established under suitable conditions. Numerical results show that this method is competitive to other two methods.
Similar content being viewed by others
References
Auslender, A.: Numerical methods for nondifferentiable convex optimization. Math. Program. Stud. 30, 102–126 (1987)
Bellavia, S., Macconi, M., Morini, B.: An affine scaling trust-region approach to bound-constrained nonlinear systems. Appl. Numer. Math. 44, 257–280 (2003)
Bihain, A.: Optimization of upper semidifferentiable functions. J. Optim. Theory Appl. 44, 545–568 (1984)
Birge, J.R., Qi, L., Wei, Z.: A general approach to convergence properties of some methods for nonsmooth convex optimization. Appl. Math. Optim. 38, 141–158 (1998)
Birge, J.R., Qi, L., Wei, Z.: Convergence analysis of some methods for minimizing a nonsmooth convex function. J. Optim. Theory Appl. 97, 357–383 (1998)
Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: A family of variable metric proximal methods. Math. Program. 68, 15–47 (1995)
Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-Newton matrices and their use in limited memory methods. Math. Program. 63, 129–156 (1994)
Byrd, R.H., Schnabel, R.B., Shultz, G.A.: A trust region algorithm for nonlinearly constrained optimization. SIAM J. Numer. Anal. 24, 1152–1170 (1987)
Buchley, A., LeNir, A.: QN-like variable storage conjugate gradients. Math. Program. 27, 577–593 (1983)
Calamai, P.H., Moré, J.J.: Projected gradient methods for linear constrained problems. Math. Program. 39, 93–116 (1987)
Charalambous, J., Conn, A.R.: An efficient method to solve the minimax problem directly. SIAM J. Numer. Anal. 15, 162–187 (1978)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)
Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program. 62, 261–273 (1993)
de Sampaio, R.J.B., Yuan, J.Y., Sun, W.Y.: Trust region algorithm for nonsmooth optimization. Appl. Math. Comput. 85, 109–116 (1997)
Demyanov, V.F., Malozemov, V.N.: Introduction to Minimax. Wiley, New York (1974)
Dennis, J.E. Jr., Li, S.B., Tapia, R.A.: A unified approach to global convergence of trust region methods for nonsmooth optimization. Math. Program. 68, 319–346 (1995)
Fan, J.Y.: A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations. J. Comput. Math. 21, 625–636 (2003)
Fletcher, R.: An algorithm for solving linearly constrained optimization problems. Math. Program. 2, 133–165 (1972)
Fletcher, R.: A model algorithm for composite nondifferentiable optimization problems. Math. Program. Stud. 17, 67–76 (1982)
Fukushima, M.: A descent algorithm for nonsmooth convex optimization. Math. Program. 30, 163–175 (1984)
Fukushima, M., Qi, L.: A globally and superlinearly convergent algorithm for nonsmooth convex minimization. SIAM J. Optim. 6, 1106–1120 (1996)
Gabriel, S.A., Pang, J.S.: A trust-region method for constrained nonsmooth equations. In: Hanger, W.W., Hearn, D.W., Pardalos, P.M. (eds.) Large Scale Optimization—State of the Art, pp. 155–181. Kluwer Academic, Dordrecht (1994)
Gilbert, J.C., Lemaréchal, C.: Some numerical experiments with variable storage quasi-Newton algorithms. Math. Program. 45, 407–436 (1989)
Goldfeld, S., Quandt, R., Trotter, H.: Maximization by quadratic hill climbing. Econometrica 34, 541–551 (1966)
Gupta, N.: A higher than first order algorithm for nonsmooth constrained optimization. Ph.D. thesis, Department of Philosophy, Washington State University, Pullman, WA (1985)
Hiriart-Urruty, J.B., Lemmaréchal, C.: Convex Analysis and Minimization Algorithms II. Springer, Berlin (1983)
Jiang, H., Qi, L., Chen, X., Sun, D.: Semismoothness and superlinear convergence in nonsmooth optimization and nonsmooth equations. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications, pp. 197–212. Plenum, New York (1996)
Kanzow, C.: An active-set type Newton method for constrained nonlinear equations. In: Ferris, M.C., Mangasarian, O.L., Pang, J.S. (eds.) Complementarity: Applications, Algorithms, and Extensions, pp. 179–200. Kluwer, Dordrecht (2001)
Kiwiel, K.C.: An ellipsoid trust region bundle method for nonsmooth convex minimization. SIAM J. Control Optim. 27, 737–757 (1989)
Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69, 89–109 (1995)
Levenberg, K.: A method for the solution of certain nonlinear problem in least squares. Q. Appl. Math. 2, 164–166 (1944)
Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)
Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83, 373–391 (1998)
Martinet, B.: Régularisation d’inéquations variationelles par approximations succcessives. Rev. Fr. Inform. Rech. Oper. 4, 154–159 (1970)
Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization. World Scientific, London (1992)
Ni, Q., Yuan, Y.: A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization. Math. Comput. 66, 1509–1520 (1997)
Nocedal, J., Yuan, Y.: Combining trust region and line search techniques. In: Yuan, Y. (ed.) Advances in Nonlinear Programming, pp. 153–175. Kluwer, Dordrecht (1998)
Pang, J.S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)
Powell, M.J.D.: Convergence properties of a class of minimization algorithms. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming, vol. 2. Academic Press, New York (1975)
Powell, M.J.D.: A new algorithm for unconstrained optimization. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming, vol. 2, pp. 1–27. Academic Press, New York (1975)
Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. Numer. Anal. 155–157 (1978)
Powell, M.J.D., Yuan, Y.: A trust region algorithm for equality constrained optimization. Math. Program. 49, 189–213 (1990)
Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–245 (1993)
Qi, L.: Regular Pseudo-smooth NCP and BVIP functions and globally and quadratically convergent generalized Newton methods for complementarity and variational inequality problems. Math. Oper. Res. 24, 440–471 (1999)
Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
Qi, L., Sun, J.: A trust region algorithm for minimization of locally Lipschitzian functions. Math. Program. 66, 25–43 (1994)
Qi, L., Tong, X., Li, D.: Active-set projected trust-region algorithm for box-constrained nonsmooth equations. J. Optim. Theory Appl. 120, 601–625 (2004)
Qi, H., Qi, L., Sun, D.: Solving KKT system via the trust region and the conjugate gradient method. SIAM J. Optim. 14, 439–463 (2004)
Rockafellar, R.T.: Monotone operators and proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Rosen, J.B.: The gradient projection method for nonlinear programming, part I. Linear constraints. J. Soc. Ind. Appl. Math. 8, 181–217 (1960)
Rosen, J.B.: The gradient projection method for nonlinear programming, part II. Nonlinear constraints. J. Soc. Ind. Appl. Math. 4, 514–532 (1961)
Ryrd, R.H., Lu, P.H., Nocedal, J., Zhu, C.Y.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)
Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis numerical results. SIAM J. Optim. 2, 121–152 (1992)
Short, N.Z.: Minimization Methods for Nondifferentiable Functions. Springer, Berlin (1985)
Ulbrich, M.: Nonmonotone trust-region method for bounded constrained semismooth equations with applications to nonlinear mixed complementarity problems. SIAM J. Optim. 11, 889–917 (2001)
Vardi, A.: A trust region algorithm for equality constrained minimization: convergence properties and implementation. SIAM J. Numer. Anal. 22, 575–591 (1985)
Wei, Z., Qi, L.: Convergence analysis of a proximal Newton method. Numer. Funct. Anal. Optim. 17, 463–472 (1996)
Wei, Z., Qi, L., Birge, J.R.: A new methods for nonsmooth convex optimization. Arch. Inequal. Appl. 2, 157–179 (1998)
Womersley, J.: Numerical methods for structured problems in nonsmooth optimization. Ph.D. thesis. Mathematics Department, University of Dundee, Dundee, Scotland (1981)
Xiao, Y., Li, D.: An active set limited memory BFGS algorithm for large-scale bound constrained optimization. Math. Methods Oper. Res. 67, 443–454 (2008)
Yuan, Y.: On a subproblem of trust region algorithms for constrained optimization. Math. Program. 47, 53–63 (1990)
Yuan, Y.: Trust region algorithm for nonlinear equations. Information 1, 7–21 (1998)
Yuan, G., Lu, X.: An active set limited memory BFGS algorithm for bound constrained optimization. Appl. Math. Model. 35, 3561–3573 (2011)
Yuan, Y., Sun, W.: Theory and Methods of Optimization. Science Press of China, Beijing (1999)
Yuan, G., Lu, X., Wei, Z.: BFGS trust-region method for symmetric nonlinear equations. J. Comput. Appl. Math. 230, 44–58 (2009)
Yuan, G., Wei, Z., Wu, Y.: Modified limited memory BFGS method with nonmonotone line search for unconstrained optimization. J. Korean Math. Soc. 47, 767–788 (2010)
Yuan, G., Wei, Z., Lu, S.: Limited memory BFGS method with backtracking for symmetric nonlinear equations. Math. Comput. Model. 54, 367–377 (2011)
Zhang, L.: A new trust region algorithm for nonsmooth convex minimization. Appl. Math. Comput. 193, 135–142 (2007)
Zhang, J., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58, 283–298 (2003)
Zhang, J., Zhu, D.: Projected quasi-Newton algorithm with trust-region for constrained optimization. J. Optim. Theory Appl. 67, 369–393 (1990)
Acknowledgements
We would like to thank two anonymous referees and the editor for catching several typos of the paper, and their useful suggestions and comments which improved the paper greatly. This work is supported by Program for Excellent Talents in Guangxi Higher Education Institutions, China NSF grands 11161003 and 71001015, Guangxi Education research project grands 201012MS013, and Guangxi SF grands 2012GXNSFAA053002.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yuan, G., Wei, Z. & Wang, Z. Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization. Comput Optim Appl 54, 45–64 (2013). https://doi.org/10.1007/s10589-012-9485-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-012-9485-8