Abstract
Optimal control problems of mixed variational inequalities of the second kind arising in flow of Bingham viscoplastic materials are considered. Two type of active-inactive set regularizing functions for the control problems are proposed and approximation properties and optimality conditions are investigated. A detailed first order optimality system for the control problem is obtained as limit of the regularized optimality conditions. For the solution of each regularized system a globalized semismooth Newton algorithm is constructed and its computational performance is investigated.
Similar content being viewed by others
References
Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, New York (1993)
Bonn, D., Morton, M.D.: Yield stress fluids slowly yield to analysis. Science 324(5933), 1401–1402 (2009)
Casas, E., Troltzsch, F.: Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31(3), 695–712 (2002)
Casas, E., Fernández, L.A.: Distributed control of systems governed by a general class of quasilinear elliptic equations. J. Differ. Equ. 104(1), 20–47 (1993)
Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)
Clain, S.: Elliptic operators of divergence type with Hölder coefficients in fractional Sobolev spaces. Rend. Mat. Appl. 17(2), 207–236 (1997)
Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press, Chicago (1988)
De Los Reyes, J.C.: Optimal control of a class of variational inequalities of the second kind. SIAM J. Control Optim. 49, 1629–1658 (2011)
De los Reyes, J.C., González, S.: Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods. J. Comput. Appl. Math. 235(1), 11–32 (2010)
De los Reyes, J.C., González, S.: A combined BDF-semismooth Newton approach for time dependent Bingham flow. Numer. Methods Partial Differ. Equ. (2011). doi:10.1002/num.20658
Dean, E.J., Glowinski, R., Guidoboni, G.: On the numerical simulation of Bingham viscoplastic flow: old and new results. J. Non-Newton. Fluid Mech. 142(1–3), 36–62 (2007)
Duvaut, G., Lions, J.-L.: Les inéquations en mécanique et en physique. Dunod, Paris (1972). Travaux et Recherches Mathématiques, No. 21
Fuchs, M., Seregin, G.: Regularity results for the quasi-static Bingham variational inequality in dimensions two and three. Math. Z. 227(3), 525–541 (1998)
Fuchs, M., Seregin, G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Lecture Notes in Mathematics, vol. 1749. Springer, Berlin, (2000)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer, Berlin (1984)
Gordaninejad, F., Graeve, O., Fuchs, A., York, D.: Proceedings of the 10th International Conference on Electrorheological Fluids and Magnetorheological Suspensions. World Scientific, Singapore (2006)
Herzog, R., Meyer, C.: Optimal control of static plasticity with linear kinematic hardening. Z. Angew. Math. Mech. 91, 777–794 (2011)
Han, W., Reddy, B.D.: On the finite element method for mixed variational inequalities arising in elastoplasticity. SIAM J. Numer. Anal. 32(6), 1778–1807 (1995)
Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2002)
Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)
Hoppe, R.H.W., Litvinov, W.G.: Modeling, simulation and optimization of electrorheological fluids. In: Glowinski, R., Xu, J. (eds.) Numerical Methods for Non-Newtonian Fluids. Handbook of Numerical Analysis, vol. 16, pp. 719–793. Elsevier, Amsterdam (2011)
Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)
Krasnoselskii, M.A., Zabreiko, P.P., Pustylnik, E.I., Sobolevskii, P.E.: Integral Operators in Spaces of Summable Functions. Noordhoff, Leiden (1976). Translated from the Russian by T. Ando, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis
Logashenko, D., Maar, B., Schulz, V., Wittum, G.: Optimal geometrical design of Bingham parameter measurement devices. In: Fast Solution of Discretized Optimization Problems (Berlin, 2000). Internat. Ser. Numer. Math., vol. 138, pp. 167–183. Birkhäuser, Basel (2001)
Marcus, M., Mizel, V.J.: Complete characterization of functions which act, via superposition, on Sobolev spaces. Trans. Am. Math. Soc. 251, 187–218 (1979)
Mignot, F., Puel, J.-P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984)
Muravleva, E.A., Olshanskii, M.A.: Two finite-difference schemes for calculation of Bingham fluid flows in a cavity. Russ. J. Numer. Anal. Math. Model. 23(6), 615–634 (2008)
Polidoro, S., Ragusa, M.A.: Sobolev-Morrey spaces related to an ultraparabolic equation. Manuscr. Math. 96(3), 371–392 (1998)
Qi, L.Q.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18(1), 227–244 (1993)
Reddy, B.D.: Mixed variational inequalities arising in elastoplasticity. Nonlinear Anal. 19(11), 1071–1089 (1992)
Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Intl. Ser. Numer. Math., vol. 153. Birkhäuser, Berlin (2005)
Ruzicka, M.: Nonlinear functional analysis. An introduction. (Nichtlineare Funktionalanalysis. Eine Einführung.). Springer, Berlin (2004)
Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1979)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de los Reyes, J.C. Optimization of mixed variational inequalities arising in flow of viscoplastic materials. Comput Optim Appl 52, 757–784 (2012). https://doi.org/10.1007/s10589-011-9435-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-011-9435-x