Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optimization of mixed variational inequalities arising in flow of viscoplastic materials

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Optimal control problems of mixed variational inequalities of the second kind arising in flow of Bingham viscoplastic materials are considered. Two type of active-inactive set regularizing functions for the control problems are proposed and approximation properties and optimality conditions are investigated. A detailed first order optimality system for the control problem is obtained as limit of the regularized optimality conditions. For the solution of each regularized system a globalized semismooth Newton algorithm is constructed and its computational performance is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, New York (1993)

    MATH  Google Scholar 

  2. Bonn, D., Morton, M.D.: Yield stress fluids slowly yield to analysis. Science 324(5933), 1401–1402 (2009)

    Article  Google Scholar 

  3. Casas, E., Troltzsch, F.: Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31(3), 695–712 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Casas, E., Fernández, L.A.: Distributed control of systems governed by a general class of quasilinear elliptic equations. J. Differ. Equ. 104(1), 20–47 (1993)

    Article  Google Scholar 

  5. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clain, S.: Elliptic operators of divergence type with Hölder coefficients in fractional Sobolev spaces. Rend. Mat. Appl. 17(2), 207–236 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  8. De Los Reyes, J.C.: Optimal control of a class of variational inequalities of the second kind. SIAM J. Control Optim. 49, 1629–1658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. De los Reyes, J.C., González, S.: Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods. J. Comput. Appl. Math. 235(1), 11–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. De los Reyes, J.C., González, S.: A combined BDF-semismooth Newton approach for time dependent Bingham flow. Numer. Methods Partial Differ. Equ. (2011). doi:10.1002/num.20658

    Google Scholar 

  11. Dean, E.J., Glowinski, R., Guidoboni, G.: On the numerical simulation of Bingham viscoplastic flow: old and new results. J. Non-Newton. Fluid Mech. 142(1–3), 36–62 (2007)

    Article  MATH  Google Scholar 

  12. Duvaut, G., Lions, J.-L.: Les inéquations en mécanique et en physique. Dunod, Paris (1972). Travaux et Recherches Mathématiques, No. 21

    MATH  Google Scholar 

  13. Fuchs, M., Seregin, G.: Regularity results for the quasi-static Bingham variational inequality in dimensions two and three. Math. Z. 227(3), 525–541 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fuchs, M., Seregin, G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Lecture Notes in Mathematics, vol. 1749. Springer, Berlin, (2000)

    Book  MATH  Google Scholar 

  15. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  16. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer, Berlin (1984)

    MATH  Google Scholar 

  17. Gordaninejad, F., Graeve, O., Fuchs, A., York, D.: Proceedings of the 10th International Conference on Electrorheological Fluids and Magnetorheological Suspensions. World Scientific, Singapore (2006)

    Google Scholar 

  18. Herzog, R., Meyer, C.: Optimal control of static plasticity with linear kinematic hardening. Z. Angew. Math. Mech. 91, 777–794 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, W., Reddy, B.D.: On the finite element method for mixed variational inequalities arising in elastoplasticity. SIAM J. Numer. Anal. 32(6), 1778–1807 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2002)

    Article  MathSciNet  Google Scholar 

  21. Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoppe, R.H.W., Litvinov, W.G.: Modeling, simulation and optimization of electrorheological fluids. In: Glowinski, R., Xu, J. (eds.) Numerical Methods for Non-Newtonian Fluids. Handbook of Numerical Analysis, vol. 16, pp. 719–793. Elsevier, Amsterdam (2011)

    Chapter  Google Scholar 

  23. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  Google Scholar 

  24. Krasnoselskii, M.A., Zabreiko, P.P., Pustylnik, E.I., Sobolevskii, P.E.: Integral Operators in Spaces of Summable Functions. Noordhoff, Leiden (1976). Translated from the Russian by T. Ando, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis

    Book  Google Scholar 

  25. Logashenko, D., Maar, B., Schulz, V., Wittum, G.: Optimal geometrical design of Bingham parameter measurement devices. In: Fast Solution of Discretized Optimization Problems (Berlin, 2000). Internat. Ser. Numer. Math., vol. 138, pp. 167–183. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  26. Marcus, M., Mizel, V.J.: Complete characterization of functions which act, via superposition, on Sobolev spaces. Trans. Am. Math. Soc. 251, 187–218 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mignot, F., Puel, J.-P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Muravleva, E.A., Olshanskii, M.A.: Two finite-difference schemes for calculation of Bingham fluid flows in a cavity. Russ. J. Numer. Anal. Math. Model. 23(6), 615–634 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Polidoro, S., Ragusa, M.A.: Sobolev-Morrey spaces related to an ultraparabolic equation. Manuscr. Math. 96(3), 371–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qi, L.Q.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18(1), 227–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reddy, B.D.: Mixed variational inequalities arising in elastoplasticity. Nonlinear Anal. 19(11), 1071–1089 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Intl. Ser. Numer. Math., vol. 153. Birkhäuser, Berlin (2005)

    MATH  Google Scholar 

  33. Ruzicka, M.: Nonlinear functional analysis. An introduction. (Nichtlineare Funktionalanalysis. Eine Einführung.). Springer, Berlin (2004)

    MATH  Google Scholar 

  34. Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos de los Reyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de los Reyes, J.C. Optimization of mixed variational inequalities arising in flow of viscoplastic materials. Comput Optim Appl 52, 757–784 (2012). https://doi.org/10.1007/s10589-011-9435-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9435-x

Keywords

Navigation