Abstract
Moreau-Yosida based approximation techniques for optimal control of variational inequalities are investigated. Properties of the path generated by solutions to the regularized equations are analyzed. Combined with a semi-smooth Newton method for the regularized problems these lead to an efficient numerical technique.
Similar content being viewed by others
References
Barbu, V.: Optimal Control of Variational Inequalities. Monographs and Studies in Mathematics, vol. 24. Pitman, London (1984)
Bergounioux, M., Mignot, F.: Optimal control of obstacle problems: existence of Lagrange multipliers. ESAIM Control Optim. Calc. Var. 5, 45–70 (2000)
Dontchev, A.L.: Implicit function theorems for generalized equations. Math. Program. 70, 91–106 (1995)
Hintermüller, M., Kopacka, I.: A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. IFB-Report No. 21 (11/2008) (2008)
Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009)
Hintermüller, M., Kunisch, K.: Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17(1), 159–187 (2006)
Ito, K., Kunisch, K.: An augmented Lagrangian technique for variational inequalities. Appl. Math. Optim. 21(3), 223–241 (1990)
Ito, K., Kunisch, K.: Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41(3), 343–364 (2000)
Ito, K., Kunisch, K.: On the Lagrange Multiplier Approach to Variational Problems and Applications. Monographs and Studies in Mathematics, vol. 24. SIAM, Philadelphia (2008)
Kunisch, K., Wachsmuth, D.: Sufficient optimality conditions and semi-smooth Newton methods for optimal control of stationary variational inequalities. ESAIM Control Optim. Calc. Var. (2011, to appear)
Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)
Schiela, A., Günter, A.: Interior point methods in function space for state constraints—inexact Newton and adaptivity. ZIB-Report 09-01
Stadler, G.: Path-following and augmented Lagrangian methods for contact problems in linear elasticity. J. Comput. Appl. Math. 203(2), 533–547 (2007)
Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15(1), 189–258 (1965)
Ulbrich, M., Ulbrich, S.: Primal-dual interior-point methods for PDE-constrained optimization. Math. Program. 117(1–2), 435–485 (2009)
Weiser, M., Deuflhard, P.: Inexact central path following algorithms for optimal control problems. SIAM J. Control Optim. 46(3), 792–815 (2007)
Wright, S.J.: Primal-dual Interior-point Methods. SIAM, Philadelphia (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
K. Kunisch was partially supported by ‘Fonds zur Förderung der Wissenschaftlichen Forschung’ under SFB 32, Mathematical Optimization and Applications in the Biomedical Sciences.
Rights and permissions
About this article
Cite this article
Kunisch, K., Wachsmuth, D. Path-following for optimal control of stationary variational inequalities. Comput Optim Appl 51, 1345–1373 (2012). https://doi.org/10.1007/s10589-011-9400-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-011-9400-8