Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Path-following for optimal control of stationary variational inequalities

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Moreau-Yosida based approximation techniques for optimal control of variational inequalities are investigated. Properties of the path generated by solutions to the regularized equations are analyzed. Combined with a semi-smooth Newton method for the regularized problems these lead to an efficient numerical technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V.: Optimal Control of Variational Inequalities. Monographs and Studies in Mathematics, vol. 24. Pitman, London (1984)

    MATH  Google Scholar 

  2. Bergounioux, M., Mignot, F.: Optimal control of obstacle problems: existence of Lagrange multipliers. ESAIM Control Optim. Calc. Var. 5, 45–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dontchev, A.L.: Implicit function theorems for generalized equations. Math. Program. 70, 91–106 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Hintermüller, M., Kopacka, I.: A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. IFB-Report No. 21 (11/2008) (2008)

  5. Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hintermüller, M., Kunisch, K.: Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17(1), 159–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ito, K., Kunisch, K.: An augmented Lagrangian technique for variational inequalities. Appl. Math. Optim. 21(3), 223–241 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ito, K., Kunisch, K.: Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41(3), 343–364 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ito, K., Kunisch, K.: On the Lagrange Multiplier Approach to Variational Problems and Applications. Monographs and Studies in Mathematics, vol. 24. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  10. Kunisch, K., Wachsmuth, D.: Sufficient optimality conditions and semi-smooth Newton methods for optimal control of stationary variational inequalities. ESAIM Control Optim. Calc. Var. (2011, to appear)

  11. Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schiela, A., Günter, A.: Interior point methods in function space for state constraints—inexact Newton and adaptivity. ZIB-Report 09-01

  13. Stadler, G.: Path-following and augmented Lagrangian methods for contact problems in linear elasticity. J. Comput. Appl. Math. 203(2), 533–547 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15(1), 189–258 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ulbrich, M., Ulbrich, S.: Primal-dual interior-point methods for PDE-constrained optimization. Math. Program. 117(1–2), 435–485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weiser, M., Deuflhard, P.: Inexact central path following algorithms for optimal control problems. SIAM J. Control Optim. 46(3), 792–815 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wright, S.J.: Primal-dual Interior-point Methods. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wachsmuth.

Additional information

K. Kunisch was partially supported by ‘Fonds zur Förderung der Wissenschaftlichen Forschung’ under SFB 32, Mathematical Optimization and Applications in the Biomedical Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunisch, K., Wachsmuth, D. Path-following for optimal control of stationary variational inequalities. Comput Optim Appl 51, 1345–1373 (2012). https://doi.org/10.1007/s10589-011-9400-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9400-8

Keywords

Navigation