Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Inexact trust region PGC method for large sparse unconstrained optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present an algorithm, partitioning group correction (PGC) algorithm based on trust region and conjugate gradient method, for large-scale sparse unconstrained optimization. In large sparse optimization, computing the whole Hessian matrix and solving the Newton-like equations at each iteration can be considerably expensive when a trust region method is adopted. The method depends on a symmetric consistent partition of the columns of the Hessian matrix and an inaccurate solution to the Newton-like equations by conjugate gradient method. And we allow that the current direction exceeds the trust region bound if it is a good descent direction. Besides, we studies a method dealing with some sparse matrices having a dense structure part. Some good convergence properties are kept and we contrast the computational behavior of our method with that of other algorithms. Our numerical tests show that the algorithm is promising and quite effective, and that its performance is comparable to or better than that of other algorithms available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coleman, T.F., Moré, J.J.: Estimation of sparse Hessian matrices and graph coloring problems. Math. Program. 28, 243–270 (1984)

    Article  MATH  Google Scholar 

  2. Coleman, T.F., Moré, J.J.: Software for estimation of sparse Hessian matrices. ACM Trans. Math. Softw. 11, 363–377 (1985)

    Article  Google Scholar 

  3. Dembo, R.S., Steihaug, T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190–212 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dennis, J.E. Jr., Mei, H.H.W.: Two new unconstrained optimization algorithms which use function and gradient values. J. Optim. Theory Appl. 28, 453–482 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Society for Industrial and Applied Mathematics, Philadelphia (1996)

    Book  MATH  Google Scholar 

  7. Dennis, J.E. Jr., Steihaug, T.: On the successive projections approach to least-squares problems. SIAM J. Numer. Anal. 23, 717–733 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng, G.C.: Iterative Solution Methods for Systems of Nonlinear Equations. Shanghai Science and Technology, Shanghai (1989) (in Chinese)

    Google Scholar 

  9. Griewank, A., Corliss, G.F.: Automatic Differentiation of Algorithms: Theory, Implementation, and Application. SIAM, Philadelphia (1991)

    MATH  Google Scholar 

  10. Harrison, J.M., Zeevi, A.: A method for staffing large call centers based on stochastic fluid models. Manuf. Serv. Oper. Manag. 7, 20–36 (2005)

    Article  Google Scholar 

  11. Hebden, M.D.: An algorithm for minimization using exact second derivatives. Tech. Rep. T.P. 515, A.E.R.E., Theoretical Physics Division, Harwell, Berkshire, England (1973)

  12. Li, G.Y.: Successive element correction algorithms for sparse unconstrained optimization. J. Optim. Theory Appl. 77, 523–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, J.X.: Numerical methods for large scale sparse minimax problems. Ph.D. Dissertation, Dalian University of Technology, Dalian, China (2008)

  14. Li, J.X., Zhang, H.W.: On the convergence of partitioning group correction algorithms. Appl. Math. Comput. 186, 365–378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J.X., Yu, B.: Truncated partitioning group correction algorithms for large scale sparse unconstrained optimization. Appl. Math. Comput. 190, 242–254 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis, Proceedings, Biennial Conference, Dundee, 1977. Lecture Notes in Mathematics, vol. 630, pp. 105–132. Springer, New York (1978)

    Chapter  Google Scholar 

  17. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)

    Article  MATH  Google Scholar 

  18. Nocedal, J., Yuan, Y.: Combining trust region and line search techniques. In: Yuan, Y. (ed.) Advances in Nonlinear Programming, pp. 153–175. Kluwer Academic, Norwell (1998)

    Chapter  Google Scholar 

  19. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Powell, M.J.D.: A new algorithm for unconstrained optimization. In: Rosen, J.B., Mangasarian, O.L., Ritter, K. (eds.) Nonlinear Programming, pp. 31–65. Academic Press, New York (1970)

    Google Scholar 

  21. Powell, M.J.D.: Convergence properties of a class of minimization algorithms. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming 2, pp. 1–27. Academic Press, New York (1975)

    Google Scholar 

  22. Powell, M.J.D., Toint, Ph.L.: On the estimation of sparse Hessian matrices. SIAM J. Numer. Anal. 16, 1060–1074 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. 20, 626–637 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, Y.F., Yuan, Y.X., Zhang, H.C.: A trust region-CG algorithm for deblurring problem in atmospheric image reconstruction. Sci. China Ser. A 45, 731–740 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Wen, Z.W., Wang, Y.F.: A new trust region algorithm for image restoration. Sci. China Ser. A 48, 169–184 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wolfram, S.: The Mathematica Book, 3rd edn. Cambridge University Press/Wolfram Media, Cambridge (1996)

    MATH  Google Scholar 

  27. Yuan, Y.X., Sun, W.Y.: Optimization Theorem and Methods. Science Press, Beijing (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazhen Huo.

Additional information

This research was supported by the Key Program of National Natural Science Foundation of China (No. 70832005), Program of Shanghai Subject Chief Scientist (No. 10XD1404300) and China Postdoctoral Science Foundation (No. 20100470731).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yan, L., Li, S. et al. Inexact trust region PGC method for large sparse unconstrained optimization. Comput Optim Appl 51, 981–999 (2012). https://doi.org/10.1007/s10589-010-9381-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9381-z

Keywords

Navigation