Abstract
We study several variants of a nonsmooth Newton-type algorithm for solving an eigenvalue problem of the form
Such an eigenvalue problem arises in mechanics and in other areas of applied mathematics. The symbol K refers to a closed convex cone in the Euclidean space ℝn and (A,B) is a pair of possibly asymmetric matrices of order n. Special attention is paid to the case in which K is the nonnegative orthant of ℝn. The more general case of a possibly unpointed polyhedral convex cone is also discussed in detail.
Similar content being viewed by others
References
Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)
Boyd, S., Lebret, H., Lobo, M., Vandenberghe, L.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)
Chen, J.S., Pan, S.: A family of NCP functions and a descent method for the nonlinear complementarity problem. Comput. Optim. Appl. 40, 389–404 (2008)
Evtushenko, Y.G., Purtov, V.A.: Sufficient conditions for a minimum for nonlinear programming problems. Dokl. Akad. Nauk SSSR 278, 24–27 (1984)
Facchinei, F., Pang, J.P.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003)
Fan, K.: A minimax inequality and applications. In: Inequalities, vol. III. Proc. of the Third Sympos., University of California, Los Angeles, CA, 1969, pp. 103–113 (dedicated to the memory of T.S. Motzkin). Academic Press, New York (1972)
Figueiredo, I.N., Júdice, J.J., Martins, J.A.C., Pinto da Costa, A.: A complementarity eigenproblem in the stability of finite-dimensional elastic systems with frictional contact. In: Ferris, M., Mangasarian, O., Pang, J.S. (eds.) Complementarity: Applications, Algorithms and Extensions. Applied Optimization Series, vol. 50, pp. 67–83. Kluwer Academic, Dordrecht (1999)
Figueiredo, I.N., Júdice, J.J., Martins, J.A.C., Pinto da Costa, A.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004)
Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12, 436–460 (2001/2002)
Galántai, A., Spedicato, E.: ABS methods for nonlinear systems of algebraic equations. Research report Nr. 5, Dipartimento di Matematica, Università degli Studi di Bergamo (2007)
Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)
Gowda, M.S., Moldovan, M., Tao, J.: Some inertia theorems in Euclidean Jordan algebras. Linear Algebra Appl. 430, 1992–2011 (2009)
Humes, C., Júdice, J.J., Queiroz, M.: The symmetric eigenvalue complementarity problem. Math. Comput. 73, 1849–1863 (2004)
Júdice, J.J., Ribeiro, I.M., Sherali, H.D.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37, 139–156 (2007)
Júdice, J.J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391–407 (2008)
Kanzow, C., Kleinmichel, H.: A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput. Optim. Appl. 11, 227–251 (1998)
Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic, Dordrecht (2002)
Kong, L., Levent, T., Xiu, N.: Fischer-Burmeister complementarity function on Euclidean Jordan algebras. Preprint, Optimization online (December 2007) (to appear in Pac. J. Optim.)
Lavilledieu, P., Seeger, A.: Existence de valeurs propres pour les systèmes multivoques: résultats anciens et nouveaux. Ann. Sci. Math. Québec 25, 47–70 (2000)
Loewy, R., Schneider, H.: Positive operators on the n-dimensional ice cream cone. J. Math. Anal. Appl. 49, 375–392 (1975)
Pang, J.S.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15, 311–341 (1990)
Pinto da Costa, A., Seeger, A.: Numerical resolution of cone-constrained eigenvalue problems. Comput. Appl. Math. 28, 37–61 (2009)
Pinto da Costa, A., Seeger, A.: Cone-constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl. 44 (2009, in press)
Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)
Quittner, P.: Spectral analysis of variational inequalities. Commun. Math. Univ. Carolinae 27, 605–629 (1986)
Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292, 1–14 (1999)
Seeger, A., Torki, M.: On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372, 181–206 (2003)
Seeger, A., Torki, M.: Local minima of quadratic forms on convex cones. J. Global Optim. 44, 1–28 (2009)
Stern, R.J., Wolkowicz, H.: Exponential nonnegativity on the ice cream cone. SIAM J. Matrix Anal. Appl. 12, 160–165 (1991)
Tseng, P.: Growth behavior of a class of merit functions for the nonlinear complementarity problem. J. Optim. Theory Appl. 89, 17–37 (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Adly, S., Seeger, A. A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput Optim Appl 49, 299–318 (2011). https://doi.org/10.1007/s10589-009-9297-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-009-9297-7