Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A nonsmooth algorithm for cone-constrained eigenvalue problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We study several variants of a nonsmooth Newton-type algorithm for solving an eigenvalue problem of the form

$$K\ni x\perp(Ax-\lambda Bx)\in K^{+}.$$

Such an eigenvalue problem arises in mechanics and in other areas of applied mathematics. The symbol K refers to a closed convex cone in the Euclidean space ℝn and (A,B) is a pair of possibly asymmetric matrices of order n. Special attention is paid to the case in which K is the nonnegative orthant of ℝn. The more general case of a possibly unpointed polyhedral convex cone is also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  2. Boyd, S., Lebret, H., Lobo, M., Vandenberghe, L.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, J.S., Pan, S.: A family of NCP functions and a descent method for the nonlinear complementarity problem. Comput. Optim. Appl. 40, 389–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Evtushenko, Y.G., Purtov, V.A.: Sufficient conditions for a minimum for nonlinear programming problems. Dokl. Akad. Nauk SSSR 278, 24–27 (1984)

    MathSciNet  Google Scholar 

  5. Facchinei, F., Pang, J.P.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003)

    Google Scholar 

  6. Fan, K.: A minimax inequality and applications. In: Inequalities, vol. III. Proc. of the Third Sympos., University of California, Los Angeles, CA, 1969, pp. 103–113 (dedicated to the memory of T.S. Motzkin). Academic Press, New York (1972)

    Google Scholar 

  7. Figueiredo, I.N., Júdice, J.J., Martins, J.A.C., Pinto da Costa, A.: A complementarity eigenproblem in the stability of finite-dimensional elastic systems with frictional contact. In: Ferris, M., Mangasarian, O., Pang, J.S. (eds.) Complementarity: Applications, Algorithms and Extensions. Applied Optimization Series, vol. 50, pp. 67–83. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  8. Figueiredo, I.N., Júdice, J.J., Martins, J.A.C., Pinto da Costa, A.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004)

    Article  MATH  Google Scholar 

  9. Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12, 436–460 (2001/2002)

    Article  MathSciNet  Google Scholar 

  10. Galántai, A., Spedicato, E.: ABS methods for nonlinear systems of algebraic equations. Research report Nr. 5, Dipartimento di Matematica, Università degli Studi di Bergamo (2007)

  11. Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gowda, M.S., Moldovan, M., Tao, J.: Some inertia theorems in Euclidean Jordan algebras. Linear Algebra Appl. 430, 1992–2011 (2009)

    Article  MathSciNet  Google Scholar 

  13. Humes, C., Júdice, J.J., Queiroz, M.: The symmetric eigenvalue complementarity problem. Math. Comput. 73, 1849–1863 (2004)

    MATH  Google Scholar 

  14. Júdice, J.J., Ribeiro, I.M., Sherali, H.D.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37, 139–156 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Júdice, J.J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391–407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kanzow, C., Kleinmichel, H.: A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput. Optim. Appl. 11, 227–251 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  18. Kong, L., Levent, T., Xiu, N.: Fischer-Burmeister complementarity function on Euclidean Jordan algebras. Preprint, Optimization online (December 2007) (to appear in Pac. J. Optim.)

  19. Lavilledieu, P., Seeger, A.: Existence de valeurs propres pour les systèmes multivoques: résultats anciens et nouveaux. Ann. Sci. Math. Québec 25, 47–70 (2000)

    MathSciNet  Google Scholar 

  20. Loewy, R., Schneider, H.: Positive operators on the n-dimensional ice cream cone. J. Math. Anal. Appl. 49, 375–392 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pang, J.S.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15, 311–341 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pinto da Costa, A., Seeger, A.: Numerical resolution of cone-constrained eigenvalue problems. Comput. Appl. Math. 28, 37–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pinto da Costa, A., Seeger, A.: Cone-constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl. 44 (2009, in press)

  24. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Quittner, P.: Spectral analysis of variational inequalities. Commun. Math. Univ. Carolinae 27, 605–629 (1986)

    MathSciNet  Google Scholar 

  26. Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Seeger, A., Torki, M.: On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372, 181–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seeger, A., Torki, M.: Local minima of quadratic forms on convex cones. J. Global Optim. 44, 1–28 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stern, R.J., Wolkowicz, H.: Exponential nonnegativity on the ice cream cone. SIAM J. Matrix Anal. Appl. 12, 160–165 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tseng, P.: Growth behavior of a class of merit functions for the nonlinear complementarity problem. J. Optim. Theory Appl. 89, 17–37 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Seeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adly, S., Seeger, A. A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput Optim Appl 49, 299–318 (2011). https://doi.org/10.1007/s10589-009-9297-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9297-7

Keywords

Navigation