Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A coordinate gradient descent method for 1-regularized convex minimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In applications such as signal processing and statistics, many problems involve finding sparse solutions to under-determined linear systems of equations. These problems can be formulated as a structured nonsmooth optimization problems, i.e., the problem of minimizing 1-regularized linear least squares problems. In this paper, we propose a block coordinate gradient descent method (abbreviated as CGD) to solve the more general 1-regularized convex minimization problems, i.e., the problem of minimizing an 1-regularized convex smooth function. We establish a Q-linear convergence rate for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to ensure sufficient descent. We propose efficient implementations of the CGD method and report numerical results for solving large-scale 1-regularized linear least squares problems arising in compressed sensing and image deconvolution as well as large-scale 1-regularized logistic regression problems for feature selection in data classification. Comparison with several state-of-the-art algorithms specifically designed for solving large-scale 1-regularized linear least squares or logistic regression problems suggests that an efficiently implemented CGD method may outperform these algorithms despite the fact that the CGD method is not specifically designed just to solve these special classes of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  2. Bradley, P.S., Fayyad, U.M., Mangasarian, O.L.: Mathematical programming for data mining: formulations and challenges. INFORMS J. Comput. 11, 217–238 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Candès, E.J., Tao, T.: Nearly optimal signal recovery from random projections: Universal encoding strategies. IEEE Trans. Inf. Theory 52, 5406–5425 (2006)

    Article  Google Scholar 

  4. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  Google Scholar 

  5. Chang, C.-C., Lin, C.-J.: LIBSVM—A library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

  6. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Daubechies, I., De Friese, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MATH  Google Scholar 

  8. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  9. Donoho, D., Tsaig, Y.: Fast solution of 1-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54, 4789–4812 (2008)

    Article  MathSciNet  Google Scholar 

  10. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Figueiredo, M., Nowak, R.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12, 906–916 (2003)

    Article  MathSciNet  Google Scholar 

  12. Figueiredo, M., Nowak, R.: A bound optimization approach to wavelet-based image deconvolution. In: IEEE Int. Conf. on Image Processing—ICIP’05, 2005

  13. Figueiredo, M., Nowak, R., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–598 (2007)

    Article  Google Scholar 

  14. Fuchs, J.-J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Theory 50, 1341–1344 (2004)

    Article  Google Scholar 

  15. Genkin, A., Lewis, D., Madigan, D.: Large-scale Bayesian logistic regression for text categorization. Technometrics 49, 291–304 (2007)

    Article  MathSciNet  Google Scholar 

  16. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  17. Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for 1-regularized minimization with applications to compressed sensing. CAAM Technical report TR07-07, Department of Computational and Applied Mathematics, Rice University (July 2007)

  18. Kim, S.-J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale 1-regularized least squares. IEEE J. Sel. Top. Signal Process. 1, 606–617 (2007)

    Article  Google Scholar 

  19. Koh, K., Kim, S.-J., Boyd, S.: An interior-point method for large-scale 1-regularized logistic regression. J. Mach. Learn. Res. 8, 1519–1555 (2007)

    MathSciNet  Google Scholar 

  20. Lee, S., Lee, H., Abeel, P., Ng, A.: Efficient 1-regularized logistic regression. In: Proceedings of the 21st National Conference on Artificial Intelligence, 2006

  21. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

    Google Scholar 

  22. Lin, C.-J., Weng, R.C., Keerthi, S.S.: Trust region Newton method for large-scale logistic regression. J. Mach. Learn. Res. 9, 627–650 (2008)

    MathSciNet  Google Scholar 

  23. Luo, Z.-Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general approach. Ann. Oper. Res. 46, 157–178 (1993)

    Article  MathSciNet  Google Scholar 

  24. Mangasarian, O.L., Musicant, D.R.: Large scale kernel regression via linear programming. Mach. Learn. 46, 255–269 (2002)

    Article  MATH  Google Scholar 

  25. Ng, A.Y.: Feature selection, 1 vs. 2 regularization, and rotational invariance, In: Proceedings of the 21st International Conference on Machine Learning, 2004

  26. Osborne, M., Presnell, B., Turlach, B.: A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20, 389–403 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Park, M., Hastie, T.: An 1 regularization-path algorithm for generalized linear models. J. R. Stat. Soc. B 69, 659–677 (2007)

    Article  MathSciNet  Google Scholar 

  28. Sardy, S., Tseng, P.: AMlet, RAMlet, and GAMlet: automatic nonlinear fitting of additive models, robust and generalized, with wavelets. J. Comput. Graph. Stat. 13, 283–309 (2004)

    Article  MathSciNet  Google Scholar 

  29. Shi, W., Wahba, G., Wright, S.J., Lee, K., Klein, R., Klein, B.: Lasso-patternsearch algorithm with application to ophthalmology and genomic data. Stat. Interface 1, 137–153 (2008)

    MathSciNet  Google Scholar 

  30. Starck, J.-L., Nguyen, M., Murtagh, F.: Wavelets and curvelets for image deconvolution: a combined approach. Signal Process. 83, 2279–2283 (2003)

    Article  MATH  Google Scholar 

  31. Tropp, J.A.: Just relax: Convex programming methods for identifying sparse signals. IEEE Trans. Inf. Theory 51, 1030–1051 (2006)

    Article  MathSciNet  Google Scholar 

  32. Tsaig, Y., Donoho, D.: Extensions of compressed sensing. Signal Process. 86, 533–548 (2005)

    Article  Google Scholar 

  33. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117, 387–423 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang, L.: Efficient regularized solution path algorithms with applications in machine learning and data mining. Ph.D. thesis, University of Michigan (2008)

  35. Wright, S.J., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. (2007, to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangwoon Yun.

Additional information

Research of K.-C. Toh was supported in part by NUS Academic Research Grant R146-000-076-112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, S., Toh, KC. A coordinate gradient descent method for 1-regularized convex minimization. Comput Optim Appl 48, 273–307 (2011). https://doi.org/10.1007/s10589-009-9251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9251-8

Keywords

Navigation