Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A computational study of exact knapsack separation for the generalized assignment problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The Generalized Assignment Problem is a well-known NP-hard combinatorial optimization problem which consists of minimizing the assignment costs of a set of jobs to a set of machines satisfying capacity constraints. Most of the existing algorithms are of a Branch-and-Price type, with lower bounds computed through Dantzig–Wolfe reformulation and column generation.

In this paper we propose a cutting plane algorithm working in the space of the variables of the basic formulation, whose core is an exact separation procedure for the knapsack polytopes induced by the capacity constraints. We show that an efficient implementation of the exact separation procedure allows to deal with large-scale instances and to solve to optimality several previously unsolved instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asahiro, Y., Ishibashi, M., Yamashita, M.: Independent and cooperative parallel search methods for the generalized assignment problem. Optim. Methods Softw. 18(2), 129–141 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beasley, J.E.: Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)

    Google Scholar 

  3. Bonami, M.P.: Étude et mise en oeuvre d’approches polyédriques pour la résolution de programmes en nombres entiers ou mixtes généraux. Ph.D. thesis, L’Université Paris 6 (2003)

  4. Boyd, E.A.: Generating Fenchel cutting planes for knapsack polyhedra. SIAM J. Optim. 3, 734–750 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyd, E.A.: Solving integer programs with cutting planes and preprocessing. In: IPCO 1993, pp. 209–220 (1993)

  6. Boyd, E.A.: Fenchel cutting planes for integer programming. Oper. Res. 42, 53–64 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyd, E.A.: On the convergence of Fenchel cutting planes in mixed-integer programming. SIAM J. Optim. 5, 421–435 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ceselli, A., Righini, G.: A branch and price algorithm for the capacitated p-median problem. Networks 45(3), 125–142 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment problem. Comput. Oper. Res. 24, 17–23 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cornuejols, G., Lemarechal, C.: A convex-analysis perspective on disjunctive cuts. Math. Program. 106(3), 567–586 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. De Farias, I.R., Nemhauser, G.L.: A family of inequalities for the generalized assignment polytope. Oper. Res. Lett. 29, 49–51 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fukasawa, R., Goycoolea, M.: On the exact separation of mixed integer knapsack cuts. In: Proceedings of the twelfth Integer Programming and Combinatorial Optimization Conference IPCO’07, Ithaca, NY. Lecture Notes in Computer Science, vol. 4513, pp. 225–239 (2007)

  13. Gottlieb, E.S., Rao, M.R.: The generalized assignment problem: Valid inequalities and facets. Math. Program. 46, 31–52 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gottlieb, E.S., Rao, M.R.: (1,k)-configuration facets for the generalized assignment problem. Math. Program. 46, 53–60 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kaparis, K., Letchford, A.N.: Separation algorithms for 0-1 knapsack polytopes. Working paper. Department of Management Science, Lancaster University (2008). Available at http://www.optimization-online.org/DB_HTML/2007/06/1677.html (2007, in preparation)

  16. Laguna, M., Kelly, J.P., Conzalez-Velarde, J.L., Glover, F.F.: Tabu search for the generalized assignment problem. Eur. J. Oper. Res. 82, 176–189 (1995)

    Article  MATH  Google Scholar 

  17. Nauss, R.M.: Solving the generalized assignment problem: An optimizing and heuristic approach. INFORMS J. Comput. 15(3), 249–266 (2003)

    Article  MathSciNet  Google Scholar 

  18. Osman, I.H.: Heuristics for the generalized assignment problem: Simulated annealing and tabu search approaches. OR Spektrum 17, 211–225 (1995)

    Article  MATH  Google Scholar 

  19. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pigatti, A., Poggi de Aragao, M., Uchoa, E.: Stabilized branch-and-cut-and-price for the generalized assignment problem. In: 2nd Brazilian Symposium on Graphs, Algorithms and Combinatorics. Electronic Notes in Discrete Mathematics, vol. 19, pp. 389–395. Elsevier, Amsterdam (2005)

    Google Scholar 

  21. Pisinger, D.: A minimal algorithm for the 0-1 knapsack problem. Oper. Res. 46, 758–767 (1995)

    MathSciNet  Google Scholar 

  22. Savelsbergh, M.: A branch-and-price algorithm for the generalized assignment problem. Oper. Res. 45(6), 831–841 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wolsey, L.A.: Facets and strong valid inequalities for integer programs. Oper. Res. 24, 367–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yagiura, M., Ibaraki, T., Glover, F.: An ejection chain approach for the generalized assignment problem. INFORMS J. Comput. 16, 133–151 (2004)

    Article  MathSciNet  Google Scholar 

  25. Yagiura, M., Ibaraki, T., Glover, F.: A path relinking approach with ejection chains for the generalized assignment problem. Eur. J. Oper. Res. 169, 548–569 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yagiura, M., Yamaguchi, T., Ibaraki, T.: A variable depth search algorithm with branching search for the generalized assignment problem. Optim. Methods Softw. 10, 419–441 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Vasilyev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avella, P., Boccia, M. & Vasilyev, I. A computational study of exact knapsack separation for the generalized assignment problem. Comput Optim Appl 45, 543–555 (2010). https://doi.org/10.1007/s10589-008-9183-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9183-8

Keywords

Navigation