Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Energy-efficient virtual machine placement in heterogeneous cloud data centers: a clustering-enhanced multi-objective, multi-reward reinforcement learning approach

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Efficient virtual machine (VM) placement is vital for optimizing the performance of cloud data centers. While recent studies have addressed this challenge, many have overlooked the heterogeneity of cloud environments and the importance of scalability. This paper introduces a novel multi-objective algorithm designed specifically for VM placement in heterogeneous and large-scale cloud data centers. Our approach leverages the K-means algorithm to group VMs based on demand characteristics. Subsequently, a multi-reward reinforcement learning algorithm is employed to allocate these VMs to physical hosts. Despite its simplicity, the proposed method demonstrates exceptional efficiency. Simulation results reveal that our approach significantly outperforms established algorithms such as GMPR, GRVMP, FFD, NSGA-II, RLVMP, and BFD. Key performance metrics include the number of active devices, energy consumption, resource utilization (CPU and memory), VM migrations, and adherence to service level agreements, highlighting the superiority of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Singh, A.K., Swain, S.R., Lee, C.N.: A metaheuristic virtual machine placement framework toward power efficiency of sustainable cloud environment. Soft Comput. 27(7), 3817–3828 (2023)

    Article  Google Scholar 

  2. Zhuang, H., Esmaeilpour Ghouchani, B.: Virtual machine placement mechanisms in the cloud environments: a systematic review. Kybernetes 50(2), 333–368 (2021)

    Article  Google Scholar 

  3. Keshavarzi, A., Haghighat, A.T., Bohlouli, M.: Adaptive resource management and provisioning in the cloud computing: a survey of definitions, standards and research roadmaps. KSII Trans. Internet Inf. Syst. (2017). https://doi.org/10.3837/tiis.2017.09.006

    Article  Google Scholar 

  4. Katal, A., Dahiya, S., Choudhury, T.: Energy efficiency in cloud computing data centers: a survey on software technologies. Clust. Comput. 26(3), 1845–1875 (2023)

    Article  Google Scholar 

  5. Helali, L., Omri, M.N.: A survey of data center consolidation in cloud computing systems. Comput. Sci. Rev. 39, 100366 (2021)

    Article  Google Scholar 

  6. Peyravi, F., Keshavarzi, A.: Agent based model for call centers using knowledge management. In: 2009 Third Asia International Conference on Modelling & Simulation, pp. 51–56. IEEE (2009)

  7. Wang, J., Yu, J., Zhai, R., He, X., Song, Y.: GMPR: a two-phase heuristic algorithm for virtual machine placement in large-scale cloud data centers. IEEE Syst. J. 17(1), 1419–1430 (2022)

    Article  Google Scholar 

  8. Azizi, S., Shojafar, M., Abawajy, J., Buyya, R.: GRVMP: a greedy randomized algorithm for virtual machine placement in cloud data centers. IEEE Syst. J. 15(2), 2571–2582 (2020)

    Article  Google Scholar 

  9. Ghetas, M.: A multi-objective monarch butterfly algorithm for virtual machine placement in cloud computing. Neural Comput. Appl. 33(17), 11011–11025 (2021)

    Article  Google Scholar 

  10. Ghasemi, A., Toroghi Haghighat, A.: A multi-objective load balancing algorithm for virtual machine placement in cloud data centers based on machine learning. Computing 102(9), 2049–2072 (2020)

    Article  MathSciNet  Google Scholar 

  11. Tripathi, A., Pathak, I., Vidyarthi, D.P.: Modified dragonfly algorithm for optimal virtual machine placement in cloud computing. J. Netw. Syst. Manag. 28(4), 1316–1342 (2020)

    Article  Google Scholar 

  12. Wei, W., Wang, K., Wang, K., Gu, H., Shen, H.: Multi-resource balance optimization for virtual machine placement in cloud data centers. Comput. Electr. Eng. 88, 106866 (2020)

    Article  Google Scholar 

  13. Ibrahim, A., Noshy, M., Ali, H.A., Badawy, M.: PAPSO: a power-aware VM placement technique based on particle swarm optimization. IEEE Access 8, 81747–81764 (2020)

    Article  Google Scholar 

  14. Gamsiz, M., Özer, A.H.: An energy-aware combinatorial virtual machine allocation and placement model for green cloud computing. IEEE Access 9, 18625–18648 (2021)

    Article  Google Scholar 

  15. Saxena, D., Gupta, I., Kumar, J., Singh, A.K., Wen, X.: A secure and multiobjective virtual machine placement framework for cloud data center. IEEE Syst. J. (2021). https://doi.org/10.1109/JSYST.2021.3092521

    Article  Google Scholar 

  16. Ibrahim, M., Imran, M., Jamil, F., Lee, Y.-J., Kim, D-H.: EAMA: efficient adaptive migration algorithm for cloud data centers (CDCs). Symmetry 13(4), 690 (2021)

  17. Peake, J., Amos, M., Costen, N., Masala, G., Lloyd, H.: PACO-VMP: parallel ant colony optimization for virtual machine placement. Future Gener. Comput. Syst. 129, 174–186 (2022)

    Article  Google Scholar 

  18. Xing, H., Zhu, J., Qu, R., Dai, P., Luo, S., Iqbal, M.A.: An ACO for energy-efficient and traffic-aware virtual machine placement in cloud computing. Swarm Evol. Comput. 68, 101012 (2022)

    Article  Google Scholar 

  19. Alharbe, N., Rakrouki, M.A., Aljohani, A.: An improved ant colony algorithm for solving a virtual machine placement problem in a cloud computing environment. IEEE Access 10, 44869–44880 (2022)

    Article  Google Scholar 

  20. Balaji, K., Sai Kiran, P., Sunil Kumar, M.: Power aware virtual machine placement in IaaS cloud using discrete firefly algorithm. Appl. Nanosci. 13(3), 2003–2011 (2023)

    Article  Google Scholar 

  21. Ghasemi, A., Toroghi Haghighat, A., Keshavarzi, A.: Enhanced multi-objective virtual machine replacement in cloud data centers: combinations of fuzzy logic with reinforcement learning and biogeography-based optimization algorithms. Clust. Comput. 26(6), 3855–3868 (2023)

    Article  Google Scholar 

  22. Shirvani, M.H.: An energy-efficient topology-aware virtual machine placement in cloud datacenters: a multi-objective discrete JAYA optimization. Sustain. Comput.: Inform. Syst. 38, 100856 (2023)

    Google Scholar 

  23. Long, S., Li, Z., Xing, Y., Tian, S., Li, D., Yu, R.: A reinforcement learning-based virtual machine placement strategy in cloud data centers. In: 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 223–230. IEEE (2020)

  24. Caviglione, L., Gaggero, M., Paolucci, M., Ronco, R.: Deep reinforcement learning for multi-objective placement of virtual machines in cloud datacenters. Soft Comput. 25(19), 12569–12588 (2021)

    Article  Google Scholar 

  25. Qin, Y., Wang, H., Yi, S., Li, X., Zhai, L.: Virtual machine placement based on multi-objective reinforcement learning. Appl. Intell. 50, 2370–2383 (2020)

    Article  Google Scholar 

  26. Xu, H., Jian, C.: A meta reinforcement learning-based virtual machine placement algorithm in mobile edge computing. Clust. Comput. 27(2), 1883–1896 (2024)

    Article  Google Scholar 

  27. Ramezani Shahidani, F., Ghasemi, A., Toroghi Haghighat, A., Keshavarzi, A.: Task scheduling in edge-fog-cloud architecture: a multi-objective load balancing approach using reinforcement learning algorithm. Computing 105(6), 1337–1359 (2023)

    Article  Google Scholar 

  28. Ammar, A.-M., Luo, J., Tang, Z., Wajdy, O.: Intra-balance virtual machine placement for effective reduction in energy consumption and SLA violation. IEEE Access 7, 72387–72402 (2019)

    Article  Google Scholar 

  29. Mosa, A., Paton, N.W.: Optimizing virtual machine placement for energy and SLA in clouds using utility functions. J. Cloud Comput. 5, 1–17 (2016)

    Article  Google Scholar 

  30. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

A.G: presenting the idea of the article, analyzing and writing the article A.K: Scientific and grammatical editing of the text. Both the authors reviewed the manuscript.

Corresponding author

Correspondence to Arezoo Ghasemi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

MORLVMP Algorithm for VM replacement: A Java Implementation.

figure e

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A., Keshavarzi, A. Energy-efficient virtual machine placement in heterogeneous cloud data centers: a clustering-enhanced multi-objective, multi-reward reinforcement learning approach. Cluster Comput 27, 14149–14166 (2024). https://doi.org/10.1007/s10586-024-04657-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-024-04657-3

Keywords

Navigation