Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Cost-optimized cloud resource management for video streaming: ARIMA predictive approach

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Predicting the number of views for videos is crucial for optimizing resource allocation and reducing costs in cloud-based video hosting platforms. In this manuscript, we propose a novel method for view count prediction using the ARIMA (AutoRegressive Integrated Moving Average) model. By accurately forecasting video viewership, we aim to minimize the allocation of unnecessary cloud resources while ensuring sufficient resources are available to handle peak demand. Our proposed method leverages historical viewership data to train and fine-tune the ARIMA model, enabling it to capture the underlying patterns and dynamics of video viewership. Through extensive experimental evaluations on a large dataset, we demonstrate the effectiveness of our approach in reducing cloud resource costs. Compared to existing methods, the proposed method achieves an average cost reduction of 25% while maintaining a high level of prediction accuracy. Furthermore, we observe a 15% improvement in resource utilization, indicating better resource allocation based on the predicted view counts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available in the Youtube trending Video Dataset repository, https://www.kaggle.com/datasets/rsrishav/youtube-trending-video-dataset.”

References

  1. Accenture’s technology trends 2023. https://www.accenture.com/us-en/insights/technology/technology-trends-2023 (2023)

  2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)

    Article  Google Scholar 

  3. Baccour, E., Erbad, A., Mohamed, A., Haouari, F., Guizani, M., Hamdi, M.: Rl-opra: reinforcement learning for online and proactive resource allocation of crowdsourced live videos. Future Gener. Comput. Syst. 112, 982–995 (2020)

    Article  Google Scholar 

  4. Baccour, E., Haouari, F., Erbad, A., Mohamed, A., Bilal, K., Guizani, M., Hamdi, M.: An intelligent resource reservation for crowdsourced live video streaming applications in geo-distributed cloud environment. IEEE Syst. J. 16(1), 240–251 (2022). https://doi.org/10.1109/JSYST.2021.3077707

    Article  Google Scholar 

  5. Bilal, K., Erbad, A.: Edge computing for interactive media and video streaming. In: 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), pp. 68–73. IEEE (2017)

  6. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: forecasting and control. Wiley, Hoboken (2015)

    Google Scholar 

  7. Bukhari, S.M.A.H., Baccour, E., Bilal, K., Shuja, J., Erbad, A., Bilal, M.: To transcode or not? a machine learning based edge video caching and transcoding strategy. Comput. Electr. Eng. 109, 108741 (2023)

    Article  Google Scholar 

  8. Chowdhury, A.A., Islam, I., Zahed, M.I.A., Ahmad, I.: An optimal strategy for uav-assisted video caching and transcoding. Ad Hoc Netw. 144, 103155 (2023)

    Article  Google Scholar 

  9. Cisco: Cisco visual networking index: Forecast and trends, 2017–2022. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (2022)

  10. Darwich, M., Ismail, Y., Darwich, T., Bayoumi, M.: Cost minimization of cloud services for on-demand video streaming. SN Comput. Sci. 3(3), 226 (2022)

    Article  Google Scholar 

  11. Fan, L., Wan, Z., Li, Y.: Deep reinforcement learning-based collaborative video caching and transcoding in clustered and intelligent edge b5g networks. Wirel. Commun. Mob. Comput. 2020, 6684293 (2020)

    Google Scholar 

  12. Gao, G., Wen, Y.: Video transcoding for adaptive bitrate streaming over edge-cloud continuum. Digit. Commun. Netw. 7(4), 598–604 (2021)

    Article  Google Scholar 

  13. Jeon, H., Seo, W., Park, E., Choi, S.: Hybrid machine learning approach for popularity prediction of newly released contents of online video streaming services. Tech. Forecast. Soc. Change 161, 120303 (2020)

    Article  Google Scholar 

  14. Jokhio, F., Ashraf, A., Lafond, S., Lilius, J.: A computation and storage trade-off strategy for cost-efficient video transcoding in the cloud. In: 2013 39th Euromicro Conference on Software Engineering and Advanced Applications, pp. 365–372. IEEE (2013)

  15. Kaggle datasets. https://www.kaggle.com/datasets. Accessed June 2023

  16. Lee, D., Kim, Y., Song, M.: Cost-effective, quality-oriented transcoding of live-streamed video on edge-servers. IEEE Transactions on Services Computing, New York (2023)

    Book  Google Scholar 

  17. Lee, Y.S., Lee, Y.S., Jang, H.R., Oh, S.B., Yoon, Y.I., Um, T.W.: Prediction of content success and cloud-resource management in internet-of-media-things environments. Electronics 11(8), 1284 (2022)

    Article  Google Scholar 

  18. Li, C., Bai, J., Chen, Y., Luo, Y.: Resource and replica management strategy for optimizing financial cost and user experience in edge cloud computing system. Inform. Sci. 516, 33–55 (2020)

    Article  MathSciNet  Google Scholar 

  19. Li, X., Darwich, M., Salehi, M.A., Bayoumi, M.: A survey on cloud-based video streaming services. Advances in Computers, pp. 193–244. Elsevier, The Netherlands (2021)

    Google Scholar 

  20. Li, Z., Li, F., Tang, T., Zhang, H., Yang, J.: Video caching and scheduling with edge cooperation. Digital Communications and Networks, Chongqing (2022)

    Google Scholar 

  21. Liu, X., Buyya, R.: Resource management and scheduling in distributed stream processing systems: a taxonomy, review, and future directions. ACM Comput. Surv. (CSUR) 53(3), 1–41 (2020)

    Article  Google Scholar 

  22. Liu, Z., Li, Q., Chen, X., Wu, C., Ishihara, S., Li, J., Ji, Y.: Point cloud video streaming: challenges and solutions. IEEE Netw. 35(5), 202–209 (2021)

    Article  Google Scholar 

  23. Martinez, I., Hafid, A.S., Jarray, A.: Design, resource management, and evaluation of fog computing systems: a survey. IEEE Internet Things J. 8(4), 2494–2516 (2020)

    Article  Google Scholar 

  24. Mishra, S., Tyagi, A.K.: The role of machine learning techniques in internet of things-based cloud applications. Artif. Intelligence-based Internet Things Syst. (2022). https://doi.org/10.1007/978-3-030-87059-1_4

    Article  Google Scholar 

  25. Narayanan, A., Verma, S., Ramadan, E., Babaie, P., Zhang, Z.L.: Deepcache: A deep learning based framework for content caching. In: Proceedings of the 2018 Workshop on Network Meets AI & ML, pp. 48–53 (2018)

  26. RM, SunP., Maddikunta, P.K.R., Parimala, M., Koppu, S., Gadekallu, T.R., Chowdhary, C.L., Alazab, M.: An effective feature engineering for dnn using hybrid pca-gwo for intrusion detection in iomt architecture. Computer Communications. 160, 139–149 (2020)

  27. Rodriguez, J.D., Perez, A., Lozano, J.A.: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 569–575 (2009)

    Article  Google Scholar 

  28. Shirmarz, A., Ghaffari, A.: Performance issues and solutions in sdn-based data center: a survey. J. Supercomput. 76(10), 7545–7593 (2020)

    Article  Google Scholar 

  29. Zhao, H., Zheng, Q., Zhang, W., Du, B., Li, H.: A segment-based storage and transcoding trade-off strategy for multi-version vod systems in the cloud. IEEE Trans. Multimed. 19(1), 149–159 (2016)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Darwich.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darwich, M., Alghamdi, T., Khalil, K. et al. Cost-optimized cloud resource management for video streaming: ARIMA predictive approach. Cluster Comput 27, 3163–3177 (2024). https://doi.org/10.1007/s10586-023-04135-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04135-2

Keywords

Navigation