Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Improving UWB ranging accuracy via multiple network model with second order motion prediction

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the wide application of ultra-wideband (UWB) ranging technology in industry, production and aerospace, how to improve the accuracy of UWB ranging has become a research hotspot. If the UWB ranging data is treated as sequence data, it is possible to improve the ranging performance by sequence analysis, which has low computation complexity compared to direct UWB signal processing. However, as the UWB ranging data has its inherent properties, existing sequence analysis methods may not achieve good performance on UWB ranging data. In this paper, a two-path deep-learning framework to process, namely the Multiple Network model with Second order motion (MNS), is proposed the improve UWB ranging performance via ranging sequence analysis. The proposed method fuses the target motion prediction via Newton’s laws of motion and error estimation via GRU, LSTM and Bayes. To evaluate our algorithm, we also proposed a method to collect both UWB ranging data and the accurate answer via laser ranging. The collected dataset \(DATA\_TS\), the proposed MNS algorithm, and the trained model are all open sourced to the community to help researchers for further research,please visit(https://github.com/xiaojiuwotongxue/data-store.git). Experiments on \(DATA\_TS\) shows our proposed method outperforms traditional regresion methods significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Yin, Z., Cui, K., Wu, Z., Yin, L.: Entropy-based TOA estimation and SVM-based ranging error mitigation in UWB ranging systems. Sensors 15(5), 11701–11724 (2015)

    Article  Google Scholar 

  2. Nguyen, T.H., Xie, L.: Relative transformation estimation based on fusion of odometry and uwb ranging data. arXiv:2202.00279 (2022)

  3. Steup, C., Beckhaus, J., Mostaghim, S.: A single-copter UWB-ranging-based localization system extendable to a swarm of drones. Drones 5(3), 85 (2021)

    Article  Google Scholar 

  4. Choi, S.H., Park, J.K., Kim, S.K., Park, J.Y.: A new ultra-wideband antenna for UWB applications. Microw. Opt. Technol. Lett. 40(5), 399–401 (2004)

    Article  Google Scholar 

  5. Zhu, L., Sun, S., Menzel, W.: Ultra-wideband (UWB) bandpass filters using multiple-mode resonator. IEEE Microwave Wirel. Compon. Lett. 15(11), 796–798 (2005)

    Article  Google Scholar 

  6. Chong, C.-C., Yong, S.K.: Uwb direct chaotic communication technology for low-rate WPAN applications. IEEE Trans. Veh. Technol. 57(3), 1527–1536 (2008)

    Article  Google Scholar 

  7. Zhang, Y., Qu, C., Wang, Y.: An indoor positioning method based on csi by using features optimization mechanism with lstm. IEEE Sens. J. 20(9), 4868–4878 (2020)

    Article  Google Scholar 

  8. Bozorgasl, Z., Dehghani, M.J.: 2-D DOA estimation in wireless location system via sparse representation. In: 2014 4th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 86–89. IEEE (2014).

  9. Zhang, K., Shen, C., Zhou, Q., Wang, H., Gao, Q., Chen, Y.: A combined gps uwb and marg locationing algorithm for indoor and outdoor mixed scenario. Clust. Comput. 22(3), 5965–5974 (2019)

    Article  Google Scholar 

  10. Risset, T., Goursaud, C., Brun, X., Marquet, K., Meyer, F.: UWB ranging for rapid movements. In: 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2018).

  11. Shi, G., He, Y., Li, B., Luo, Q., Zhang, C.: Construction and analysis of multi-path propagation model for indoor short range ultra-wideband signal based on time domain ray tracing method. Clust. Comput. 22(4), 9525–9542 (2019)

    Article  Google Scholar 

  12. De Angelis, G., Moschitta, A., Carbone, P.: Positioning techniques in indoor environments based on stochastic modeling of UWB round-trip-time measurements. IEEE Trans. Intell. Transp. Syst. 17(8), 2272–2281 (2016)

    Article  Google Scholar 

  13. Yu, K., Wen, K., Li, Y., Zhang, S., Zhang, K.: A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments. IEEE Trans. Veh. Technol. 68(1), 686–699 (2018)

    Article  Google Scholar 

  14. Xin, J., Gao, K., Shan, M., Yan, B., Liu, D.: A bayesian filtering approach for error mitigation in ultra-wideband ranging. Sensors 19(3), 440 (2019)

    Article  Google Scholar 

  15. Wang, T., Hu, K., Li, Z., Lin, K., Wang, J., Shen, Y.: A semi-supervised learning approach for UWB ranging error mitigation. IEEE Wirel. Commun. Lett. 10(3), 688–691 (2020)

    Article  Google Scholar 

  16. Qiu, H., Xu, S., Han, F., Liu, H., Caffo, B.: Robust Estimation of Transition Matrices in High Dimensional Heavy-tailed Vector Autoregressive Processes. In: 32nd International Conference on Machine Learning, ICML 2015, pp. 1843–1851. International Machine Learning Society (IMLS) (2015)

  17. Melnyk, I., Banerjee, A.: Estimating structured vector autoregressive models. arXiv:1602.06606 (2016)

  18. Box, G.E.P., Jenkins, G.M., Reinsel, C.: Time series analysis: forecasting and control. Oakland, California, Holden-Day, 1976 (2013)

  19. Lai, G., Chang, W., Yang, Y., Liu, H.: Modeling long and short-term temporal patterns with deep neural networks, pp. 95–104 (2018)

  20. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)

    Article  Google Scholar 

  21. Hammerla, N.Y., Halloran, S., Ploetz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables. J. Sci. Comput. 61(2), 454–476 (2016)

    Google Scholar 

  22. Dasgupta, S., Osogami, T.: Nonlinear dynamic boltzmann machines for time-series prediction (2016)

  23. Mao, C., Lin, K., Yu, T., Shen, Y.: A probabilistic learning approach to UWB ranging error mitigation. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)

  24. Liu, J., Jia, B., Guo, L., Huang, B., Wang, L., Baker, T.: Ctsloc: an indoor localization method based on CNN by using time-series RSSI. Clust. Comput. 25(4), 2573–2584 (2022)

    Article  Google Scholar 

  25. Suski, W., Banerjee, S., Hoover, A.: Using a map of measurement noise to improve UWB indoor position tracking. IEEE Trans. Instrum. Meas. 62(8), 2228–2236 (2013)

    Article  Google Scholar 

  26. Khan, A.A., Naqvi, S.A., Khan, M.S., Ijaz, B.: Quad port miniaturized mimo antenna for UWB 11 GHZ and 13 GHZ frequency bands. AEU: Archiv fur Elektronik und Ubertragungstechnik: Electr. Commun. 131, 153618 (2021)

  27. Willmott, C., Ackleson, S., Davis, R., Feddema, J., Klink, K., Legates, D., O’donnell, J., Rowe, C.: Statistics for the evaluation of model performance. J. Geophys. Res. 90(C5), 8995–9005 (1985)

    Article  Google Scholar 

  28. Qi, J., Du, J., Siniscalchi, S.M., Ma, X., Lee, C.-H.: On mean absolute error for deep neural network based vector-to-vector regression. IEEE Signal Process. Lett. 27, 1485–1489 (2020)

    Article  Google Scholar 

  29. Borchani, H., Varando, G., Bielza, C., Larranaga, P.: A survey on multi-output regression. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 5(5), 216–233 (2015)

    Article  Google Scholar 

  30. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?-arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014)

    Article  Google Scholar 

  31. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  32. Vapnik, V., Golowich, S., Smola, A.: Support vector method for function approximation, regression estimation and signal processing. Adv. Neural Inform. Process. Syst. 9, 281–287 (1996)

  33. Zhang, G.P.: Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

GX: conceptualization, methodology, writing–original draft, writing–review and editing. YG: software, methodology, validation and data analysis. XC: writing—original draft, writing–review and editing. HL: investigation, writing–review & editing. SZ: writing–review and editing.

Corresponding author

Correspondence to Xiaoxuan Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, G., Guo, Y., Chen, X. et al. Improving UWB ranging accuracy via multiple network model with second order motion prediction. Cluster Comput 27, 2261–2272 (2024). https://doi.org/10.1007/s10586-023-04080-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04080-0

Keywords

Navigation