Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A multiobjective decomposition evolutionary algorithm with optimal history-based neighborhood adaptation and a dual-indicator selection strategy

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Neighborhood selection is an important part of a multiobjective evolutionary algorithm based on decomposition (MOEA/D) because the impetus for population evolution mainly comes from its neighborhood. However, the fixed neighborhood size used in MOEA/D may deteriorate the performance of the algorithm due to an unreasonable allocation of computational resources. To further improve the performance of MOEA/D, this paper proposes a multiobjective decomposition evolutionary algorithm with optimal history-based neighborhood adaptation and a dual-indicator selection strategy. The optimal history-based neighborhood adaptation strategy is applied to alleviate the imbalance between exploration and exploitation in the search process, while the dual-indicator selection strategy is developed to enhance the population diversity. The performance of the proposed algorithm is evaluated on the DTLZ and WFG series test problems. Experimental results show that the proposed algorithm performs competitively in comparison with several MOEA/D variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The experimental data used to support the findings of this study are included within the article.

References

  1. Han, F., Chen, W., Ling, Q., Han, H.: Multi-objective particle swarm optimization with adaptive strategies for feature selection. Swarm Evol. Comput. 62, 1–15 (2021)

    Article  Google Scholar 

  2. Niu, Y., Kong, D., Wen, R., Cao, Z., Xiao, J.: An improved learnable evolution model for solving multi-objective vehicle routing problem with stochastic demand. Knowl.-Based Syst. 230, 1–19 (2021)

    Article  Google Scholar 

  3. Jain, S., Ramesh, D., Bhattacharya, D.: A multi-objective algorithm for crop pattern optimization in agriculture. Appl. Soft Comput. 112, 1–13 (2021)

    Article  Google Scholar 

  4. Abido, M.A., Elazouni, A.: Modified multi-objective evolutionary programming algorithm for solving project scheduling problems. Expert Syst. Appl. 183, 1–10 (2021)

    Article  Google Scholar 

  5. Kalyanmoy, D.: Multi-objective optimization using evolutionary algorithms. West Sussex, England(2001)

  6. Deb, K.: Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evol. Comput. 7(3), 205–230 (1999)

    Article  Google Scholar 

  7. Li, H., Zhang, Q., Deng, J.: Biased Multi-objective Optimization and Decomposition Algorithm. IEEE Transactions on Cybernetics. 47(1), 52–66 (2017)

    Article  Google Scholar 

  8. Wang, G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput & Applic. 31, 1995–2014 (2019)

    Article  Google Scholar 

  9. Li, S., Chen, H., Wang, M., Heidari, A., Mirjalili, S.: Slime mould algorithm: A new method for stochastic optimization. Futur. Gener. Comput. Syst. 111, 300–323 (2020)

    Article  Google Scholar 

  10. Wang, G.: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing 10, 151–164 (2016)

    Article  Google Scholar 

  11. Yang, Y., Chen, H., Heidari, A., Gandomi, A.H.: Hunger Games Search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Applications. 177, 12 (2021)

    Google Scholar 

  12. Ahmadianfar, I., Heidari, A., Gandomi, A.H., Chu, X., Chen, H.: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Applications. 181, 1150 (2021)

    Google Scholar 

  13. Tu, J., Chen, H., Wang, M., Gandomi, A.H.: The Colony Predation Algorithm. J. Bionic Eng. 18(3), 674–710 (2021)

    Article  Google Scholar 

  14. Ahmadianfar, I., Heidari, A., Noshadian, S., Chen, H., Gandomi, A.H.: INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Applications. 195, 116516 (2022)

    Article  Google Scholar 

  15. Heidari, A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  16. Wang, R., Fleming, P.J., Purshouse, R.C.: General framework for localised multi-objective evolutionary algorithms. Inf. Sci. 258, 29–53 (2014)

    Article  MathSciNet  Google Scholar 

  17. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  18. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multi-objective optimization. in: Proceedings of the Evolutionary Methods for Design, Optimisation, and Control, Barcelona, CIMNE, Spain. 95–100(2002)

  19. Hashemi, A., Dowlatshahi, M.B., Nezamabadi-pour, H.: An efficient Pareto-based feature selection algorithm for multi-label classification. Inf. Sci. 581, 428–447 (2021)

    Article  MathSciNet  Google Scholar 

  20. Tirkolaee, E.B., Goli, A., Faridnia, A., Soltani, M., Weber, G.: Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms. J. Clean. Prod. 276, 1–23 (2020)

    Article  Google Scholar 

  21. Tanabe, R., Ishibuchi, H.: A niching indicator-based multi-modal many-objective optimizer. Swarm Evol. Comput. 49, 134–146 (2019)

    Article  Google Scholar 

  22. Zapotecas-Martínez, S., López-Jaimes, A., García-Nájera, A.: LIBEA: a lebesgue indicator-based evolutionary algorithm for multi-objective optimization. Swarm Evol. Comput. 44, 404–419 (2019)

    Article  Google Scholar 

  23. García, J.L.L., Monroy, R., Hernández, V.A.S., Coello, C.A.C.: COARSE-EMOA: An indicator-based evolutionary algorithm for solving equality constrained multi-objective optimization problems. Swarm Evol. Comput. 67, 1–15 (2021)

    Article  Google Scholar 

  24. Falcón-Cardona, J.G., Ishibuchi, H., Coello Coello, C.A., Emmerich, M.: on the effect of the cooperation of indicator-based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 25(4), 681–695 (2021)

    Article  Google Scholar 

  25. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. Springer, Heidelberg, Germany (2004)

    Book  Google Scholar 

  26. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  27. Wang, R., Zhang, Q., Zhang, T.: Decomposition-based algorithms using pareto adaptive scalarizing methods. IEEE Trans. Evol. Comput. 20(6), 821–837 (2016)

    Article  Google Scholar 

  28. Zhu, L., Lin, J., Li, Y., Wang, Z.: A decomposition-based multi-objective genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem. Knowl.-Based Syst. 225, 1–18 (2021)

    Article  Google Scholar 

  29. Zou, F., Chen, D., Xu, Q., Jiang, Z., Kang, J.: two-stage personalized recommendation based on multi-objective teaching–learning-based optimization with decomposition. Neurocomputing 452, 716–727 (2021)

    Article  Google Scholar 

  30. Pal, M., Bandyopadhyay, S.: Decomposition in decision and objective space for multi-modal multi-objective optimization. Swarm Evol. Comput. 62, 1–15 (2021)

    Article  Google Scholar 

  31. Zhou, X., Wang, X., Gu, X.: A decomposition-based multiobjective evolutionary algorithm with weight vector adaptation. Swarm Evol. Comput. 61, 1–17 (2021)

    Article  Google Scholar 

  32. Zhang, A., Sun, G., Ren, J., Li, X., Wang, Z., Jia, X.: A dynamic neighborhood learning-based gravitational search algorithm. IEEE Transactions on Cybernetics. 48(1), 436–447 (2018)

    Article  Google Scholar 

  33. Deb, K., Thiele, L., Laumanns, M., Zitzler, E (2002) Scalable Multi-Objective Optimization Test Problems. Proceedings of the 2002 Congress on Evolutionary Computation. 1, 825–830

  34. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  35. Das, I., Dennis, J.: Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM Journal Optimization. 10(5), 477–506 (1998)

    MathSciNet  MATH  Google Scholar 

  36. Wu, M., Kwong, S., Jia, Y ., Li, K., Zhang, Q.(2017) Adaptive weights generation for decomposition-based multi-objective optimization using gaussian process regression. Proceedings of the 2017 Genetic and Evolutionary Computation Conference. Berlin, German

  37. Biswas, P. P., Suganthan, P. N.: Large Initial Population and Neighborhood Search incorporated in LSHADE to solve CEC2020 Benchmark Problems. 2020 IEEE Congress on Evolutionary Computation (CEC). Glasgow, UK (2020)

  38. Wang, P., Liao, B., Zhu, W., Cai, L., Ren, S., Chen, M., Li, Z., Li, K.: Adaptive region adjustment to improve the balance of convergence and diversity in MOEA/D. Appl. Soft Comput. 70, 797–813 (2018)

    Article  Google Scholar 

  39. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight adjustment. Evol. Comput. 22(2), 231–264 (2014)

    Article  Google Scholar 

  40. He, X., Zhou, Y., Chen, Z., Zhang, Q.: Evolutionary many-objective optimization based on dynamical decomposition. IEEE Trans. Evol. Comput. 23(3), 361–375 (2019)

    Article  Google Scholar 

  41. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  42. Liu, H., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)

    Article  Google Scholar 

  43. Farias, L. R. C., Araujol, A. F. R.: Many-Objective Evolutionary Algorithm Based On Decomposition With Random And Adaptive Weights. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari, Italy, 3746–3751(2019)

  44. Qiao, J., Zhou, H., Yang, C., Yang, S.: A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty. Appl. Soft Comput. 74, 190–205 (2019)

    Article  Google Scholar 

  45. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  46. Li, K., Wang, R., Zhang, T., Ishibuchi, H.: Evolutionary many-objective optimization: a comparative study of the state-of-the-art. IEEE Access. 6(26), 194–214 (2018)

    Google Scholar 

  47. Jiang, S., He, X., Zhou, Y.: Many-objective evolutionary algorithm based on adaptive weighted decomposition. Appl. Soft Comput. 84(105731), 1–11 (2019)

    Google Scholar 

Download references

Acknowledgements

This research is partly supported by the National Natural Science Foundation of China under Project Code (62176146, 62272384, 61773314), and the Natural Science Basic Research Program of Shaanxi (Program No. 2020JM-709).

Funding

This research is partly supported by the National Natural Science Foundation of China under Project Code (62176146, 62272384, 61773314), and the Natural Science Basic Research Program of Shaanxi (Program No. 2020JM-709).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The algorithm design and implementation were performed by WL and JY. Experiment and analysis were performed by QJ and QX. LW revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junqing Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yuan, J., Jiang, Q. et al. A multiobjective decomposition evolutionary algorithm with optimal history-based neighborhood adaptation and a dual-indicator selection strategy. Cluster Comput 26, 3319–3339 (2023). https://doi.org/10.1007/s10586-022-03736-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03736-7

Keywords

Navigation