Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Flexible identity-based remote data integrity checking for cloud storage with privacy preserving property

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Provable data possession (PDP) protocol is a mechanism that guarantees the integrity of user’s cloud data, and many efficient protocols have been proposed. Many of them ignore data’s privacy against the third-party auditor (TPA) and also suffer from intricate management of certificates, which heavily relies on the public key infrastructure (PKI). In order to overcome the two shortcomings, Li et al. recently proposed an “identity-based” (IB) PDP protocol with the privacy-preserving property (IEEE Syst J, https://doi.org/10.1109/JSYST.2020.2978146). However, we find out that (1) their protocol has great communication overhead, (2) a PKI-based signature scheme is used as a building block, which results in their protocol is not completely identity-based. Hence, in this paper, we try to improve the performance of this protocol. Concretely, by adopting flexible data-splitting and tag-aggregating techniques, we can greatly reduce its communication overhead. A concrete example shows that the total communication overhead can be reduced over 99%. Moreover, by replacing with an identity-based signature, we can twist this protocol into a complete IB-PDP protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No data, models or code were generated or used during the study.

References

  1. Zhang, R., Ma, H., Lu, Y.: Provably secure cloud storage for mobile networks with less computation and smaller overhead. Sci. China Inf. Sci. 60(12), 122104 (2017)

    Article  Google Scholar 

  2. Li, L., Liu, J.: SecACS: enabling lightweight secure auditable cloud storage with data dynamics. J. Inf. Secur. Appl. 54, 102545 (2020)

    Google Scholar 

  3. Chen, L., Zhou, S., Huang, X., et al.: Data dynamics for remote data possession checking in cloud storage. Comput. Electr. Eng. 39(7), 2413–2424 (2013)

    Article  Google Scholar 

  4. Wang, Q., Wang, C., Ren, K., et al.: Enabling public auditability and data dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib. Syst. 22(5), 847–859 (2011)

    Article  Google Scholar 

  5. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage in cloud computing. IEEE Trans. Parallel Distrib. Syst. 24(9), 1717–1726 (2013)

    Article  Google Scholar 

  6. Chen, X., Shang, T., Zhang, F., et al.: Dynamic data auditing scheme for Big Data storage. Front. Comput. Sci. 14, 219–229 (2020)

    Article  Google Scholar 

  7. Chaudhary, R., Aujla, G., Kumar, N., et al.: Optimized Big Data management across multi-cloud data centers: software-defined-network-based analysis. IEEE Commun. Mag. 56(2), 118–126 (2018)

    Article  Google Scholar 

  8. Ateniese, G., Burns, R., Curtmola, R.: Provable data possession at untrusted stores. In: CCS’07, pp. 598–609 (2007)

  9. Garg, N., Bawa, S.: RITS-MHT: relative indexed and time stamped Merkle hash tree based data auditing protocol for cloud computing. J. Netw. Comput. Appl. 84, 1–13 (2017)

    Article  Google Scholar 

  10. Shao, B., Ji, Y.: Efficient TPA-based auditing scheme for secure cloud storage. Clust. Comput. J. Netw. Softw. Tools Appl. (2021). https://doi.org/10.1007/s10586-021-03239-x

    Article  Google Scholar 

  11. Jayaraman, I., Panneerselvam, A.: A novel privacy preserving digital forensic readiness provable data possession technique for health care data in cloud. J. Ambient Intell. Humaniz. Comput. 12, 4911–4924 (2021)

    Article  Google Scholar 

  12. Wei, P., Wang, D., Zhao, Y., et al.: BlockChain data-based cloud data integrity protection mechanism. Future Gener. Comput. Syst. 102, 902–911 (2020)

    Article  Google Scholar 

  13. Zhong, H., Li, Z., Cui, J., et al.: Efficient dynamic multi-keyword fuzzy search over encrypted cloud data. J. Netw. Comput. Appl. 149, 102469 (2020)

    Article  Google Scholar 

  14. Jayaraman, I., Mohammed, M.: Secure privacy conserving provable data possession (SPC-PDP) framework. Inf. Syst. e-Bus. Manag. 18, 351–377 (2020)

    Article  Google Scholar 

  15. Shen, X., Zhu, L., Xu, C., et al.: A privacy-preserving data aggregation scheme for dynamic groups in fog computing. Inf. Sci. 514, 118–130 (2020)

    Article  Google Scholar 

  16. Tian, H., Nan, F., Chang, C., et al.: Privacy-preserving public auditing for secure data storage in fog-to-cloud computing. J. Netw. Comput. Appl. 127, 59–69 (2019)

    Article  Google Scholar 

  17. Yan, H., Li, J., Zhang, Y.: Remote data checking with a designated verifier in cloud storage. IEEE Syst. J. 14(2), 1788–1797 (2020)

    Article  Google Scholar 

  18. Chang, J., Wang, H., Wang, F., et al.: RKA security for identity-based signature scheme. IEEE Access 8, 17833–17841 (2020)

    Article  Google Scholar 

  19. Chang, J., Ji, Y., Shao, B., et al.: Certificateless homomorphic signature scheme for network coding. IEEE/ACM Trans. Netw. (2020). https://doi.org/10.1109/TNET.2020.3013902

    Article  Google Scholar 

  20. Sookhak, M., Akhunzada, A., Gani, A., et al.: Towards dynamic remote data auditing in computational clouds. Sci. World J. 2014, 269357 (2014)

    Article  Google Scholar 

  21. Aujla, G., Chaudhary, R., Kumar, N., et al.: SecSVA: secure storage, verification and auditing of Big Data in the cloud environment. IEEE Commun. Mag. 56(1), 78–85 (2018)

    Article  Google Scholar 

  22. Ji, Y., Shao, B., Chang, J., et al.: Privacy-preserving certificateless provable data possession scheme for Big Data storage on cloud, Revisited. Appl. Math. Comput. 386, 125478 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Xue, J., Xu, C., Zhao, J., et al.: Identity-based public auditing for cloud storage systems against malicious auditors via BlockChain. Sci. China Inf. Sci. 62, 32104 (2019)

    Article  Google Scholar 

  24. Li, J., Yan, H., Zhang, Y.: Identity-based privacy preserving remote data integrity checking for cloud storage. IEEE Syst. J. (2020). https://doi.org/10.1109/JSYST.2020.2978146

    Article  Google Scholar 

  25. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the pairing. J. Cryptol. 17(4), 297–319 (2004)

    Article  MathSciNet  Google Scholar 

  26. Deswarte, Y., Quisquater, J., Sa\(\ddot{1}\)dane, A.: Remote integrity checking. In: Proceedings of 6th Working Conference on Integrity and Internal Control in Information System, pp. 1–11 (2003)

  27. Juels, A., Kaliski, B.: PoRs: proofs of retrievability for large files. In: Proceedings of 14th ACM Conference on Computing and Communications Security, pp. 584–597 (2007)

  28. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Proceedings of the 14th International Conference on Theory and Applied Cryptography Information Security, pp. 90–107 (2008)

  29. Li, J., Wang, Y., Zhang, Y., et al.: Full verifiability for outsourced decryption in attribute based encryption. IEEE Trans. Serv. Comput. (2017). https://doi.org/10.1109/TSC.2017.2710190

    Article  Google Scholar 

  30. Li, J., Yao, W., Zhang, Y., et al.: Flexible and fine-grained attribute-based data storage in cloud computing. IEEE Trans. Serv. Comput. 10(5), 785–796 (2017)

    Article  Google Scholar 

  31. Chang, J., Shao, B., Ji, Y., et al.: Secure network coding from secure proof of retrievability. Sci. China Inf. Sci. 64(12), 229301 (2021). https://doi.org/10.1007/s11432-020-2997-0

    Article  Google Scholar 

  32. Wang, H., Wu, Q., Qin, B., et al.: Identity-based remote data possession checking in public clouds. IET Inf. Secur. 8(2), 114–121 (2014)

    Article  Google Scholar 

  33. Wang, H., He, D., Tang, S.: Identity-based proxy-oriented data uploading and remote data integrity checking in public cloud. IEEE Trans. Inf. Forensic Secur. 11(6), 1165–1176 (2016)

    Article  Google Scholar 

  34. Yu, Y., Mu, Y., Ni, J., et al.: Identity privacy-preserving public auditing with dynamic group for secure mobile cloud storage. In: Proceedings of 8th International Conference on Network and System Security, pp. 28–44 (2014)

  35. Yu, Y., et al.: Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage. IEEE Trans. Inf. Forensic Secur. 12(4), 767–778 (2017)

    Article  Google Scholar 

  36. Li, J., Yan, H., Zhang, Y.: Certificateless public integrity checking of group shared data on cloud storage. IEEE Trans. Serv. Comput. (2018). https://doi.org/10.1109/TSC.2018.2789893

    Article  Google Scholar 

  37. Bian, G., Chang, J.: Certificateless provable data possession protocol for the multiple copies and clouds case. IEEE Access 8, 102958–102970 (2020)

    Article  Google Scholar 

  38. He, D., Kumar, N., Wang, H., et al.: Privacy-preserving certificateless provable data possession scheme for Big Data storage on cloud. Appl. Math. Comput. 314, 31–43 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Hao, Z., Zhong, S., Yu, N.: A privacy-preserving remote data integrity checking protocol with data dynamics and public verifiability. IEEE Trans. Knowl. Data Eng. 23(9), 1432–1437 (2011)

    Article  Google Scholar 

  40. Zhou, E., Li, Z.: An improved remote data possession checking protocol in cloud storage. In: Proceedings of 14th International Conference on Algorithms and Architecture for Parallel Processing, pp. 611–617 (2014)

  41. Zhang, Y., Xu, C., Liang, X., et al.: Efficient public verification of data integrity for cloud storage systems from indistinguishability obfuscation. IEEE Trans. Inf. Forensic Secur. 12, 676–688 (2017)

    Article  Google Scholar 

  42. Sun, Y., Liu, Q., Chen, X., et al.: An adaptive authenticated data structure with privacy-preserving for Big Data stream in cloud. IEEE Trans. Inf. Forensic Secur. 15, 3295–3310 (2020)

    Article  Google Scholar 

  43. Chen, R., Li, Y., Yu, Y., et al.: BlockChain-based dynamic provable data possession for smart cities. IEEE Internet Things J. 7(5), 4143–4154 (2020)

    Article  Google Scholar 

  44. Zhao, Q., Chen, S., Liu, Z., et al.: BlockChain-based privacy-preserving remote data integrity checking scheme for IoT information systems. Inf. Process. Manag. 57(6), 102355 (2020)

    Article  Google Scholar 

  45. Liang, W., Fan, Y., Li, K., et al.: Secure data storage and recovery in industrial BlockChain network environments. IEEE Trans. Ind. Inform. 16(10), 6543–6552 (2020)

    Article  Google Scholar 

  46. Fan, K., Bao, Z., Liu, M., et al.: Dredas: decentralized, reliable and efficient remote outsourced data auditing scheme with BlockChain smart contract for industrial IoT. Future Gener. Comput. Syst. 110, 665–674 (2020)

    Article  Google Scholar 

  47. Cheng, X., Chen, F., Xie, D., et al.: Design of a secure medical data sharing scheme based on BlockChain. J. Med. Syst. 44, 52 (2020)

    Article  Google Scholar 

  48. Zhu, Z., Qi, G., Zheng, M., et al.: BlockChain based consensus checking in decentralized cloud storage. Simul. Model. Pract. Theory 102, 101987 (2020)

    Article  Google Scholar 

  49. Galindo, D., Garcia, F.: A Schnorr-like lightweight identity-based signature scheme. In: AFRICACRYPT, Gammarth, pp. 135–148 (2009)

  50. Chang, J., Shao, B., Ji, Y., et al.: Efficient identity-based provable multi-copy data possession in multi-cloud storage, Revisited. IEEE Commun. Lett. (2020). https://doi.org/10.1109/LCOMM.2020.3013280

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous referees for their invaluable suggestions and comments. This work is supported in part by National Natural Science Foundation of China (Nos. 61672416, 61872284), in part by Project of Natural Science Research in Shaanxi (2021JLM-16), and in part by Foundation of State Key Laboratory of Information Security (No. 2021-MS-04).

Author information

Authors and Affiliations

Authors

Contributions

Y. Ji and B. Shao contributed significantly to analysis of LYZ-protocol. J. Chang performed the security analysis and wrote the manuscript. G. Bian contributed to manuscript preparation.

Corresponding author

Correspondence to Yanyan Ji.

Ethics declarations

Ethical approval

Ethical approval was not required for this research.

Informed consent

All the authors listed have approved the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Shao, B., Chang, J. et al. Flexible identity-based remote data integrity checking for cloud storage with privacy preserving property. Cluster Comput 25, 337–349 (2022). https://doi.org/10.1007/s10586-021-03408-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03408-y

Keywords

Navigation