Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Privacy preserving personalized blockchain reliability prediction via federated learning in IoT environments

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The integration of blockchain and the Internet of Things (IoT) is seen as having significant potential. In IoT Environments, Blockchain builds a trusted environment for IoT information sharing, where information is immutable and reliable. In particular, when edge devices are connected to a blockchain network, they need to be connected to reliable blockchain peers for synchronizing with valid data. Therefore, blockchain reliability prediction has gained attention owing to its ability to help users find highly reliable blockchain peers. Contextual information has been considered useful in many studies for generating highly personalized blockchain reliability predictions. However, these contextual factors are privacy-sensitive, and therefore disclosing them to third parties is risky. To address this challenge, we propose a privacy-preserving personalized blockchain reliability prediction model through federated learning neural collaborative filtering (FNCF) in IoT. Our model allows users to achieve user privacy protection without passing data to a third party and provides personalized predictions for users. We can also leverage the power of edge computing to enable a fast data processing capability and low latency required by IoT applications. Finally, our model was evaluated using a set of experiments based on real-world datasets. The experimental results show that the proposed model achieves high accuracy, efficiency, and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liang, W., Ji, N.: Privacy challenges of IoT-based blockchain: a systematic review. Clust. Comput. (2021). https://doi.org/10.1007/s10586-021-03260-0

    Article  Google Scholar 

  2. Liang, W., Xiao, L., Zhang, K., Tang, M., He, L., Li, K.: Data fusion approach for collaborative anomaly intrusion detection in blockchain-based systems. IEEE Internet Things J. (2021). https://doi.org/10.1109/JIOT.2021.3053842

    Article  Google Scholar 

  3. Reyna, A., Martín, C., Chen, J., Soler, E., Díaz, M.: On blockchain and its integration with IoT. Challenges and opportunities. Future Gener. Comput. Syst. 88, 173–190 (2018). https://doi.org/10.1016/j.future.2018.05.046

    Article  Google Scholar 

  4. Liang, W., Zhang, D., Lei, X., Tang, M., Li, K., Zomaya, A.: Circuit copyright blockchain: blockchain-based homomorphic encryption for IP circuit protection. IEEE Trans. Emerg. Top. Comput. (2020). https://doi.org/10.1109/TETC.2020.2993032

    Article  Google Scholar 

  5. Wu, Q., He, K., Chen, X.: Personalized federated learning for intelligent IoT applications: a cloud-edge based framework. IEEE Open J. Comput. Soc. 1, 35–44 (2020). https://doi.org/10.1109/OJCS.2020.2993259

    Article  Google Scholar 

  6. Voigt, P., Bussche, A.: The eu general data protection regulation (gdpr). A practical guide, 1st edn. Springer, Cham (2017)

    Book  Google Scholar 

  7. Annas, G., et al.: Hipaa regulations-a new era of medical-record privacy? N. Engl. J. Med. 348(15), 1486–1490 (2003)

    Article  Google Scholar 

  8. Ran, S.: A model for web services discovery with QoS. ACM Sigecom Exch. 4(1), 1–10 (2003). https://doi.org/10.1145/844357.844360

    Article  Google Scholar 

  9. Liang, W., Li, Y., Xu, J., Qin, Z., Li, K.-C.: QoS prediction and adversarial attack protection for distributed services under DLaaS. IEEE Trans. Comput. (2021). https://doi.org/10.1109/TC.2021.3077738

    Article  Google Scholar 

  10. Gao, H., Xu, Y., Yin, Y., Zhang, W., Li, R., Wang, X.: Context-aware QoS prediction with neural collaborative filtering for internet-of-things services. IEEE Internet Things J. 7(5), 4532–4542 (2020). https://doi.org/10.1109/JIOT.2019.2956827

    Article  Google Scholar 

  11. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  12. Wu, H., Zhang, Z., Luo, J., Yue, K., Hsu, C.: Multiple Attributes QoS prediction via deep neural model with contexts. IEEE Trans. Serv. Comput. (2018). https://doi.org/10.1109/TSC.2018.2859986

    Article  Google Scholar 

  13. Wu, H., Yue, K., Li, B., Zhang, B., Hsu, C.: Collaborative QoS prediction with context-sensitive matrix factorization. Future Gener. Comput. Syst. (2018). https://doi.org/10.1016/j.future.2017.06.020

    Article  Google Scholar 

  14. Li, J., Wang, J., Sun, Q., Zhou, A.: Temporal influences-aware collaborative filtering for QoS-based service recommendation. In: 2017 IEEE International Conference on Services Computing (SCC), pp. 471–474. IEEE (2017). https://doi.org/10.1109/SCC.2017.67

  15. Yin, Y., Yu, F., Xu, Y., Yu, L., Mu, J.: Network location-aware service recommendation with random walk in cyber-physical systems. Sensors 17(9), 2059 (2017). https://doi.org/10.3390/s17092059

    Article  Google Scholar 

  16. Zhou, Q., Wu, H., Yue, K., Hsu, C.: Spatio-temporal context-aware collaborative QoS prediction. Future Gener. Comput. Syst. (2019). https://doi.org/10.1016/j.future.2019.05.024

    Article  Google Scholar 

  17. Chowdhury, R.R., Chattopadhyay, S., Adak, C.: CAHPHF: context-aware hierarchical QoS prediction with hybrid filtering. IEEE Trans. Serv. Comput. (2020). https://doi.org/10.1109/TSC.2020.3041626

    Article  Google Scholar 

  18. Xiong, W., Wu, Z., Li, B., Gu, Q.: A learning approach to QoS prediction via multi-dimensional context. In: 2017 IEEE international conference on web services (ICWS), pp. 164–171. IEEE (2017). https://doi.org/10.1109/ICWS.2017.29

  19. Nagarajan, R., Thirunavukarasu, R.: A service context-aware QoS prediction and recommendation of cloud infrastructure services. Arab. J. Sci. Eng. 45, 2929–2943 (2020). https://doi.org/10.1007/s13369-019-04218-6

    Article  Google Scholar 

  20. Liu, Z., Sheng, Q., Zhang, W., Chu, D., Xu, : X.: Context-aware multi-QoS prediction for services in mobile edge computing. In: 2019 IEEE international conference on services computing (SCC), pp. 72–79. IEEE (2019). https://doi.org/10.1109/SCC.2019.00024

  21. Nguyên, T.T, Xiao, X., Yang, Y., Hui, S., Shin, H., Shin, J.: Collecting and analyzing data from smart device users with local differential privacy. Preprint at arXiv:1606.05053 (2016)

  22. Badsha, S., et al.: Privacy preserving location-aware personalized web service recommendations. IEEE Trans. Serv. Comput. (2018). https://doi.org/10.1109/TSC.2018.2839587

    Article  Google Scholar 

  23. Badsha, S., Yi, X., Khalil, I., Liu, D., Nepal, S., Lam, K.: Privacy preserving user based web service recommendations. IEEEIEEE Access 6, 56647–56657 (2018). https://doi.org/10.1109/ACCESS.2018.2871447

    Article  Google Scholar 

  24. Qi, L., et al.: Privacy-aware data fusion and prediction with spatial-temporal context for smart city industrial environment. IEEE Trans Ind. Inform. 17(6), 4159–4167 (2021). https://doi.org/10.1109/TII.2020.3012157

    Article  Google Scholar 

  25. Chi, X., Yan, C., Wang, H., Rafique, W., Qi, L.: Amplified LSH-based recommender systems with privacy protection. Pract. Exp. Concurr. Comput. (2020). https://doi.org/10.1002/CPE.5681

    Article  Google Scholar 

  26. Zhang, Y., Pan, J., Qi, L., He, Q.: Privacy-preserving quality prediction for edge-based IoT services. Future Gener. Comput. Syst. (2021). https://doi.org/10.1016/j.future.2020.08.014

    Article  Google Scholar 

  27. Liu, S., et al.: Privacy-preserving collaborative web services QoS prediction via differential privacy. In: Chen, L., Jensen, C., Shahabi, C., Yang, X., Lian, X. (eds.) Web and big data. APWeb-WAIM 2017. Lecture notes in computer science, vol. 10366. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63579-8_16

    Chapter  Google Scholar 

  28. Zheng, P., Zheng, Z., Chen, L.: Selecting Reliable Blockchain Peers via Hybrid Blockchain Reliability Prediction, arXiv preprint arXiv:1910.14614 (2019)

  29. Xu, J., Zhuang, Z., Wang, K., Liang, W.: High-accuracy reliability prediction approach for blockchain services under BaaS. In: Zheng, Z., Dai, H.N., Fu, X., Chen, B. (eds.) Blockchain and trustworthy systems. BlockSys 2020. Communications in computer and information science, vol. 1267. Springer, Singapore (2020)

    Google Scholar 

  30. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural Collaborative Filtering. In: Proceedings of the 26th international conference on world wide web (WWW ’17). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, pp. 173–182. https://doi.org/10.1145/3038912.3052569

  31. Sun, T., Shao, Y., Li, X., Liu, P., Yan, H., Qiu, X., & Huang, X.: (2020). Learning sparse sharing architectures for multiple tasks. Proc AAAI Conf Artif Intell. 34(05), 8936–8943 (2020). https://doi.org/10.1609/aaai.v34i05.6424

  32. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized QoS prediction for web services via collaborative filtering. In: Proceedings of the IEEE international conference on web services (ICWS), pp. 439–446. IEEE (2007)

  33. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-basedcollaborative filtering recommendation algorithms. In: Proceedings of the10th international world wide web conference (WWW), pp. 285–295 (2001)

  34. Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware web service recommendation by collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No.61702318), 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No.2020LKSFG08D), the Shantou University Scientific Research Start-up Fund Project (No.NTF18024), and in part by 2019 Guangdong province special fund for science and technology (“major special projects + task list”) project (No. 2019ST043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Ching Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Lin, J., Liang, W. et al. Privacy preserving personalized blockchain reliability prediction via federated learning in IoT environments. Cluster Comput 25, 2515–2526 (2022). https://doi.org/10.1007/s10586-021-03399-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03399-w

Keywords

Navigation