Abstract
Enforcing Service Level Agreements (SLA) on service provisioning is a challenge in cloud computing environments. This paper proposes an architecture for multiparty (provider and client) auditing in cloud computing to identify SLA deviations. The architecture uses inspectors (software agents) and an independent auditor (third party) to collect SLA metrics from these parties. Privacy is preserved by using the separation of duties for all associated entities (inspectors and auditors). Additionally, service computing surges are automatically detected and handled using machine learning, avoiding performance bottlenecks and misinterpretation of measured SLA items. Thus, this paper improves service maintainability by avoiding service design changes when the service faces performance issues.
Similar content being viewed by others
References
Jung, J.J.: Service chain-based business alliance formation in service-oriented architecture. Expert Syst. Appl. 38(3), 2206–2211 (2011)
Perepletchikov, M., Ryan, C., Frampton, K., Tari, Z.: Coupling metrics for predicting maintainability in service-oriented designs. In: Software Engineering Conference, pp. 329–340 (2007)
Marcon, A.L., Santin, A.O., Stihler, M., Bachtold, J.: A UCONABC resilient authorization evaluation for cloud computing. IEEE Trans. Parallel Distrib. Syst. 25(2), 457–467 (2014)
Slimani, S., Hamrouni, T., Charrada, F.B.: Service-oriented replication strategies for improving quality-of-service in cloud computing a survey. Clust Comput. (2020). https://doi.org/10.1007/s10586-020-03108-z
Masdari, M., Khoshnevis, A.: A survey and classification of the workload forecasting methods in cloud computing. Clust. Comput. 23, 1–26 (2019)
Peng, G., Wang, H., Dong, J., Zhang, H.: Knowledge-based resource allocation for collaborative simulation development in a multitenant cloud computing environment. IEEE Trans. Serv. Comput. 11(2), 306–317 (2018)
Baldan, F.J., Ramírez-Gallego, S., Bergmeir, C., Herrera, F., Benítez, J.M.: A forecasting methodology for workload forecasting in cloud systems. IEEE Trans. Cloud Comput. 6, 929–941 (2018)
Felici-Castell, S., Segura-Garcia, J., Garcia-Pineda, M.: Adaptive QoE-based architecture on cloud mobile media for live streaming. Clust. Comput. 22(4), 1–14 (2019)
Fitó, O., Guitart, J.: Business-driven management of infrastructure-level risks in Cloud providers. Future Gener. Comput. Syst. 32, 41–53 (2014)
Vlachopapadopoulos, K.P., González, R.S., Dimolitsas, I., Dechouniotis, D., Ferrer, A.J., Papavassiliou, S.: Collaborative SLA and reputation-based trust management in cloud federations. Future Gener. Comput. Syst. 100, 498–512 (2019)
Rossem, S.V., Tavernier, W., Colle, D., Pickavet, M., Demeester, P.: Profile-based resource allocation for virtualized network functions. IEEE Trans. Netw. Serv. Manag. 16, 1374–1388 (2019)
Liang, C., Hiremagalore, S., Stavrou, A., Rangwala, H.: Predicting network response times using social information. In: 2011 International Conference on Advances in Social Networks Analysis and Mining, pp. 527–531 (2011)
Dabbagh, M., Hamdaoui, B., Guizani, M., Rayes, A.: An energy-efficient VM prediction migration framework for overcommitted clouds. IEEE Trans. Cloud Comput. 6, 955–966 (2018)
Absa, S., Benedict, S., Kumar, A.: Monitoring IaaS using various cloud monitors. Clust. Comput. 22(1), 1–13 (2019)
Walraven, S., Van Landuyt, D., Truyen, E., Handekyn, K., Joosen, W.: Efficient customization of multitenant Software-as-a-Service applications with service lines. J. Syst. Softw. 91, 48–62 (2014)
Yau, S.S., An, H.G.: Software engineering meets services and cloud computing. Computer (Long Beach Calif.) 44(October), 47–53 (2011)
Cai, F., Zhu, N., He, J., Mu, P., Li, W., Yu, Y.: Survey of access control models and technologies for cloud computing. Clust. Comput. 22, 1–12 (2019)
Masdari, M., Khezri, H.: Efficient VM migrations using forecasting techniques in cloud computing: a comprehensive review. Clust. Comput. 23, 1–30 (2020)
Li, N., Jiang, H., Feng, D., Shi, Z.: Storage sharing optimization under constraints of SLO compliance and performance variability. IEEE Trans. Serv. Comput. 12, 58–72 (2019)
Klemperer, P.F., Jeon, H.Y., Payne, B.D., Hoe, J.C.: High-performance memory snapshotting for real-time, consistent, hypervisor-based monitors. IEEE Trans. Dependable Secure Comput. 17, 518–535 (2020)
Vicentini, C., Santin, A., Viegas, E., Abreu, V.: A machine learning auditing model for detection of multi-tenancy issues within tenant domain. In: 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 543–552 (2018)
Borhani, A.H., Hung, T., Lee, B.-S., Qin, Z.: Power-network aware VM migration heuristics for multi-tier web applications. Clust. Comput. 22(3), 757–782 (2019)
Skene, J., Raimondi, F., Emmerich, W.: Service-level agreements for electronic services. IEEE Trans. Softw. Eng. 36(2), 288–304 (2010)
Tomanek, O., Mulinka, P., Kencl, L.: Multidimensional cloud latency monitoring and evaluation. Comput. Netw. 107, 104–120 (2016)
Wang, Y.H., Wu, I.C.: Achieving high and consistent rendering performance of Java AWT/Swing on multiple platforms. Softw. Pract. Exp. 39(7), 701–736 (2009)
Xie, R., Gamble, R.: A tiered strategy for auditing in the cloud. In: Proceedings—2012 IEEE 5th International Conference on Cloud Computing CLOUD 2012, pp. 945–946 (2012)
Doelitzscher,F., Fischer,C., Moskal,D., Reich,C., Knahl,M., Clarke,N.: ”Validating cloud infrastructure changes by cloud audits”, Proc. - 2012 IEEE 8th World Congr. Serv. Serv. 2012, pp. 377–384, (2012)
Li, L., Xu, L., Li, J., Zhang, C.: Study on the third-party audit in cloud storage service. In: Proceedings—2011 International Conference on Cloud and Service Computing CSC 2011, pp. 220–227 (2011)
Liu, J., Xian, M., Fu, S., Huang, K.: Securing the cloud storage audit service: defending against frame and collude attacks of third party auditor. IET Commun. 8(12), 2106–2113 (2014)
Bodik, P., Griffith, R., Sutton, C., Fox, A., Jordan, M.I., Patterson, D.A.: Statistical machine learning makes automatic control practical for Internet datacenters. In: HotCloud, p. 12 (2009)
Terekhov, D., Tran, T.T., Down, D.G., Beck, J.C.: Integrating queueing theory and scheduling for dynamic scheduling problems. J. Artif. Intell. Res. 50, 535–572 (2014)
Bottou, L.: From machine learning to machine reasoning. Mach. Learn. 94, 15 (2014)
Bodík, P., Fox, A., Franklin, M.J., Jordan, M.I., Patterson, D.A.: Workload Spikes for Stateful Services. University of California, Berkeley (2009)
Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Buyya, R., De Rose, C.A.F.: Towards autonomic detection of SLA violations in Cloud infrastructures. Future Gener. Comput. Syst. 28(7), 1017–1029 (2012)
Zhang, J., Zhao, X.: Efficient chameleon hashing-based privacy-preserving auditing in cloud storage. Clust. Comput. 19, 47–56 (2016)
Qian, P., Liu, Z., He, Q., Zimmermann, R., Wang, X.: Towards automated reentrancy detection for smart contracts based on sequential models. IEEE Access 8, 19685–19695 (2020)
KDE—System Monitor (Ksysguard). https://userbase.kde.org/KSysGuard. Accessed Nov 2020
Viegas, E., Santin, A., Bessani, A., Neves, N.: BigFlow: real-time and reliable anomaly-based intrusion detection for high-speed networks. Future Gener. Comput. Syst. 93, 473–485 (2019)
Segalin, D., Santin, A.O., Marynowski, J.E., Segalin, L., Segalin, L.: An approach to deal with processing surges in cloud computing. In: 2015 IEEE 39th Annual Computer Software and Application Conference, pp. 897–905 (2015)
Uriarte, R.B., De Nicola, R., Scoca, V., Tiezzi, F.: Defining and guaranteeing dynamic service levels in clouds. Future Gener. Comput. Syst. 99, 27–40 (2019)
ElasticSearch—Open Source Search and Analytics. https://www.elastic.co/. Accessed Nov 2020
Eucalyptus Cloud Platform. https://github.com/eucalyptus/eucalyptus. Accessed Nov 2020
Acknowledgements
This work is partially sponsored by the Brazilian National Council for Scientific and Technological Development (CNPq), Grant 430972/2018-0.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Viegas, E., Santin, A., Bachtold, J. et al. Enhancing service maintainability by monitoring and auditing SLA in cloud computing. Cluster Comput 24, 1659–1674 (2021). https://doi.org/10.1007/s10586-020-03209-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-020-03209-9