Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Resource provisioning using workload clustering in cloud computing environment: a hybrid approach

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In recent years, cloud computing paradigm has emerged as an internet-based technology to realize the utility model of computing for serving compute-intensive applications. In the cloud computing paradigm, the IT and business resources, such as servers, storage, network, and applications, can be dynamically provisioned to cloud workloads submitted by end-users. Since the cloud workloads submitted to cloud providers are heterogeneous in terms of quality attributes, management and analysis of cloud workloads to satisfy Quality of Service (QoS) requirements can play an important role in cloud resource management. Therefore, it is necessary for the provisioning of proper resources to cloud workloads using clustering of them according to QoS metrics. In this paper, we present a hybrid solution to handle the resource provisioning issue using workload analysis in a cloud environment. Our solution utilized the Imperialist Competition Algorithm (ICA) and K-means for clustering the workload submitted by end-users. Also, we use a decision tree algorithm to determine scaling decisions for efficient resource provisioning. The effectiveness of the proposed approach under two real workloads traces is evaluated. The simulation results demonstrate that the proposed solution reduces the total cost by up to 6.2%, and the response time by up to 6.4%, and increases the CPU utilization by up to 13.7%, and the elasticity by up to 30.8% compared with the other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chandrasekaran, K.: Essentials of cloud computing. Chapman and Hall/CRC, Boca Raton (2014)

    Book  Google Scholar 

  2. Ghobaei-Arani, M., Souri, A.: LP-WSC: a linear programming approach for web service composition in geographically distributed cloud environments. J. Supercomput. 75(5), 2603–2628 (2019)

    Article  Google Scholar 

  3. Chaisiri, S., Lee, B.-S., Niyato, D.: Optimization of resource provisioning cost in cloud computing. IEEE Trans. Serv. Comput. 5(2), 164–177 (2011)

    Article  Google Scholar 

  4. Zhang, L., Zhang, Y., Jamshidi, P., Xu, L., Pahl, C.: Service workload patterns for Qos-driven cloud resource management. J. Cloud Comput. 4(1), 23 (2015)

    Article  Google Scholar 

  5. Mian, R., Martin, P., Vazquez-Poletti, J.L.: Provisioning data analytic workloads in a cloud. Fut. Gener. Comput. Syst. 29(6), 1452–1458 (2013)

    Article  Google Scholar 

  6. Singh, S., Chana, I.: Q-aware: Quality of service based cloud resource provisioning. Comput. Electr. Eng. 47, 138–160 (2015)

    Article  Google Scholar 

  7. Silva Filho, T.M., Pimentel, B.A., Souza, R.M., Oliveira, A.L.: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization. Exp. Syst. Appl. 42(17), 6315–6328 (2015)

    Article  Google Scholar 

  8. Niknam, T., Fard, E.T., Pourjafarian, N., Rousta, A.: An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering. Eng. Appl. Artif. Intell. 24(2), 306–317 (2011)

    Article  Google Scholar 

  9. Singh, S., Chana, I., Singh, M.: The journey of QoS-aware autonomic cloud computing. IT Professional 19(2), 42–49 (2017)

    Article  Google Scholar 

  10. Kaur, P., Mehta, S.: Resource provisioning and work flow scheduling in clouds using augmented Shuffled Frog Leaping Algorithm. J. Parallel Distrib. Comput. 101, 41–50 (2017)

    Article  Google Scholar 

  11. Haghighi, M.A., Maeen, M., Haghparast, M.: An energy-efficient dynamic resource management approach based on clustering and meta-heuristic algorithms in cloud computing IaaS platforms. Wireless Pers. Commun. 104(4), 1367–1391 (2019)

    Article  Google Scholar 

  12. Singh, S., Chana, I., Buyya, R.: STAR: SLA-aware autonomic management of cloud resources. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/TCC.2017.2648788

    Article  Google Scholar 

  13. Chen, J., Zhu, X., Bao, W., Wu, G., Yan, H., Zhang, X.: TRIERS: traffic burst oriented adaptive resource provisioning in cloud. J. Phys. 1168(3), 032061 (2019)

    Google Scholar 

  14. Gill, S.S., Buyya, R., Chana, I., Singh, M., Abraham, A.: BULLET: particle swarm optimization based scheduling technique for provisioned cloud resources. J. Netw. Syst. Manag. 26(2), 361–400 (2018)

    Article  Google Scholar 

  15. Suresh, A., Varatharajan, R.: Competent resource provisioning and distribution techniques for cloud computing environment. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1293-6

    Article  Google Scholar 

  16. Cheng, M., Li, J., Nazarian, S.: DRL-cloud: deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers. In: Proceedings of the 23rd Asia and South Pacific Design Automation Conference, pp. 129–134. IEEE Press (2018). https://doi.org/10.1109/ASPDAC.2018.8297294

  17. Gong, S., Yin, B., Zheng, Z., Cai, K.-Y.: An adaptive control method for resource provisioning with resource utilization constraints in cloud computing. Int. J. Comput. Intell. Syst. 12(2), 485–497 (2019)

    Article  Google Scholar 

  18. Gill, S.S., Buyya, R.: Resource provisioning based scheduling framework for execution of heterogeneous and clustered workloads in clouds: from fundamental to autonomic offering. J. Grid Comput. 17(3), 385–417 (2019). https://doi.org/10.1007/s10723-017-9424-0

    Article  Google Scholar 

  19. Moreno-Vozmediano, R., Montero, R.S., Huedo, E., Llorente, I.M.: Efficient resource provisioning for elastic Cloud services based on machine learning techniques. J. Cloud Comput. 8(1), 5 (2019)

    Article  Google Scholar 

  20. Feng, D., Wu, Z., Zuo, D., Zhang, Z.: ERP: an elastic resource provisioning approach for cloud applications. PLoS ONE 14(4), e0216067 (2019)

    Article  Google Scholar 

  21. Erradi, A., Iqbal, W., Mahmood, A., Bouguettaya, A.: Web application resource requirements estimation based on the workload latent features. IEEE Trans. Serv. Comput. (2019). https://doi.org/10.1109/TSC.2019.2918776

    Article  Google Scholar 

  22. Ramesh, K., Pandey, A.: An improved normalization technique for white light photoelasticity. Opt. Lasers Eng. 109, 7–16 (2018)

    Article  Google Scholar 

  23. Aslanpour, M.S., Dashti, S.E., Ghobaei-Arani, M., Rahmanian, A.A.: Resource provisioning for cloud applications: a 3-D, provident and flexible approach. J. Supercomput. 74(12), 6470–6501 (2018)

    Article  Google Scholar 

  24. Ghobaei-Arani, M., Shamsi, M., Rahmanian, A.A.: An efficient approach for improving virtual machine placement in cloud computing environment. J. Exp. Theor. Artifi. Intell. 29(6), 1149–1171 (2017)

    Article  Google Scholar 

  25. Iqbal, W., Dailey, M.N., Carrera, D., Janecek, P.: Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Fut. Gener. Comput. Syst. 27(6), 871–879 (2011)

    Article  Google Scholar 

  26. Chuprikov, P., Nikolenko, S., Kogan, K.: On demand elastic capacity planning for service auto-scaling. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016). https://doi.org/10.1109/INFOCOM.2016.7524616

  27. Qavami, H.R., Jamali, S., Akbari, M.K., Javadi, B.: Dynamic resource provisioning in cloud computing: a heuristic markovian approach. In: International conference on cloud computing, pp. 102–111. Springer (2013). https://doi.org/10.1007/978-3-319-05506-0_10

  28. Koperek, P., Funika, W.: Dynamic business metrics-driven resource provisioning in cloud environments. In: International Conference on Parallel Processing and Applied Mathematics, pp. 171–180. Springer (2011). https://doi.org/10.1007/978-3-642-31500-8_18

  29. Hasan, M.Z., Magana, E., Clemm, A., Tucker, L., Gudreddi, S.L.D.: Integrated and autonomic cloud resource scaling. In: 2012 IEEE network operations and management symposium, pp. 1327–1334. IEEE (2012). https://doi.org/10.1109/NOMS.2012.6212070  

  30. https://support.rightscale.com/03-Tutorials/02-AWS/index.html.

  31. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software 41(1), 23–50 (2011)

    Google Scholar 

  32. Ghobaei-Arani, M., Souri, A., Baker, T., Hussien, A.: ControCity: an autonomous approach for controlling elasticity using buffer Management in Cloud Computing Environment. IEEE Access 7, 106912–106924 (2019). https://doi.org/10.1109/ACCESS.2019.2932462

    Article  Google Scholar 

  33. OW2 Consortium, RUBiS: An auction site prototype, 1999, https://rubis.ow2.org/.

  34. "FIFA. 2014. 1998 World Cup Web Site Access Logs—The Internet Traffic Archive. Retrieved March 27, 2018 from https://ita.ee.lbl.gov/html/contrib/WorldCup.html

  35. Nasa-http- two months of http logs from the kscnasa www server. https://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

  36. Ghobaei-Arani, M., Khorsand, R., Ramezanpour, M.: An autonomous resource provisioning framework for massively multiplayer online games in cloud environment. J. Netw. Comput. Appl. 142, 76–97 (2019). https://doi.org/10.1016/j.jnca.2019.06.002

    Article  Google Scholar 

  37. Shahidinejad, A., Ghobaei-Arani, M. and Esmaeili, L.: An elastic controller using Colored Petri Nets in cloud computing environment. Cluster Computing, pp.1–27 (2019)  

  38. Li, K.: Quantitative modeling and analytical calculation of elasticity in cloud computing. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/TCC.2017.2665549

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shahidinejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahidinejad, A., Ghobaei-Arani, M. & Masdari, M. Resource provisioning using workload clustering in cloud computing environment: a hybrid approach. Cluster Comput 24, 319–342 (2021). https://doi.org/10.1007/s10586-020-03107-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03107-0

Keywords

Navigation