Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Hybrid gradient descent cuckoo search (HGDCS) algorithm for resource scheduling in IaaS cloud computing environment

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Resource scheduling is a procedure for the distribution of resources over time to perform a required task and a decision making process in cloud computing. Optimal resource scheduling is a great challenge and considered to be an NP-hard problem due to the fluctuating demand of cloud users and dynamic nature of resources. In this paper, we formulate a new hybrid gradient descent cuckoo search (HGDCS) algorithm based on gradient descent (GD) approach and cuckoo search (CS) algorithm for optimizing and resolving the problems related to resource scheduling in Infrastructure as a Service (IaaS) cloud computing. This work compares the makespan, throughput, load balancing and performance improvement rate of existing meta-heuristic algorithms with proposed HGDCS algorithm applicable for cloud computing. In comparison with existing meta-heuristic algorithms, proposed HGDCS algorithm performs well for almost in both cases (Case-I and Case-II) with all selected datasets and workload archives. HGDCS algorithm is comparatively and statistically more effective than ACO, ABC, GA, LCA, PSO, SA and original CS algorithms in term of problem solving ability in accordance with results obtained from simulation and statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, 2008. GCE’08 2008, pp. 1–10. IEEE

  2. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. ACM SIGCOMM Comput Commun Rev 39(1), 50–55 (2008)

    Article  Google Scholar 

  3. Gill, G.S., Wadhwa, A., Jatain, A.: Cloud computing: a new age of computing. In: 2014 fourth international conference on advanced computing & communication technologies 2014, pp. 243–250. IEEE

  4. Shojafar, M., Canali, C., Lancellotti, R., Abawajy, J.: Adaptive computing-plus-communication optimization framework for multimedia processing in cloud systems. IEEE Trans. Cloud Comput. 1–14 (2016)

  5. Canali, C., Lancellotti, R.: Automatic parameter tuning for class-based virtual machine placement in cloud infrastructures. In: Software, Telecommunications and Computer Networks (SoftCOM), 2015 23rd International Conference on 2015, pp. 290–294. IEEE

  6. Younas, M., Ghani, I., Jawawi, D.N., Khan, M.M.: A Framework for agile development in cloud computing environment. 인터넷정보학회논문지 17(5), 67–74 (2016)

  7. Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y.: Resource scheduling for infrastructure as a service (IaaS) in cloud computing: challenges and opportunities. J. Netw. Comput. Appl. 68, 173–200 (2016)

    Article  Google Scholar 

  8. Tsai, C.-W., Rodrigues, J.J.: Metaheuristic scheduling for cloud: a survey. IEEE Syst. J. 8(1), 279–291 (2014)

    Article  Google Scholar 

  9. Mathew, T., Sekaran, K.C., Jose, J.: Study and analysis of various task scheduling algorithms in the cloud computing environment. In: Advances in Computing, Communications and Informatics (ICACCI, 2014 International Conference on 2014, pp. 658–664. IEEE

  10. Thaman, J., Singh, M.: Current perspective in task scheduling techniques in cloud computing: a review. Int. J. Found. Comput. Sci. Technol. 6, 65–85 (2016)

    Article  Google Scholar 

  11. Kalra, M., Singh, S.: A review of metaheuristic scheduling techniques in cloud computing. Egypt. Inform. J. 16(3), 275–295 (2015)

    Article  Google Scholar 

  12. Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y., Abdulhamid, S.I.M.: An appraisal of meta-heuristic resource allocation techniques for IaaS cloud. Indian J. Sci. Technol. 9(4), 1–14 (2016)

    Article  Google Scholar 

  13. Hallaj, E., Tabbakh, S.R.K.: Study and analysis of task scheduling algorithms in clouds based on artificial bee colony. In: Technology, Communication and Knowledge (ICTCK), 2015 International Congress on 2015, pp. 38–45. IEEE

  14. Huang, M.G., Ou, Z.Q.: Review of task scheduling algorithm research in cloud computing. Adv. Mater. Res. 926, 3236–3239 (2014)

    Article  Google Scholar 

  15. Singh, P., Dutta, M., Aggarwal, N.: A review of task scheduling based on meta-heuristics approach in cloud computing. Knowl. Inf. Syst. 52(1), 1–51 (2017)

    Article  Google Scholar 

  16. Cui, Y.F., Li, X.M., Dong, K.W., Zhu, J.L.: Cloud computing resource scheduling method research based on improved genetic algorithm. Adv. Mater. Res. 271, 552–557 (2011)

    Article  Google Scholar 

  17. Chen, S., Wu, J., Lu, Z.: A cloud computing resource scheduling policy based on genetic algorithm with multiple fitness. In: Computer and Information Technology (CIT), 2012 IEEE 12th International Conference on 2012, pp. 177–184. IEEE

  18. Sindhu, S., Mukherjee, S.: A genetic algorithm based scheduler for cloud environment. In: Computer and Communication Technology (ICCCT), 2013 4th International Conference on 2013, pp. 23–27. IEEE

  19. Javanmardi, S., Shojafar, M., Amendola, D., Cordeschi, N., Liu, H., Abraham, A.: hybrid job scheduling algorithm for cloud computing environment. In: Proceedings of the Fifth international conference on innovations in bio-inspired computing and applications IBICA 2014 2014, pp. 43–52. Springer

  20. Shojafar, M., Javanmardi, S., Abolfazli, S., Cordeschi, N.: FUGE: A joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method. Clust. Comput. 18(2), 829–844 (2015)

    Article  Google Scholar 

  21. Saha, S., Pal, S., Pattnaik, P.K.: A novel scheduling algorithm for cloud computing environment. In: Computational Intelligence in Data Mining—Vol. 1, pp. 387–398. Springer (2016)

  22. Zhang, H., Li, P., Zhou, Z., Yu, X.: A PSO-based hierarchical resource scheduling strategy on cloud computing. In: Trustworthy Computing and Services. pp. 325–332. Springer (2013)

  23. Netjinda, N., Sirinaovakul, B., Achalakul, T.: Cost optimal scheduling in IaaS for dependent workload with particle swarm optimization. J. Supercomput. 68(3), 1579–1603 (2014)

    Article  Google Scholar 

  24. Liu, J., Luo, X.G., Zhang, X.M., Zhang, F.: Job scheduling algorithm for cloud computing based on particle swarm optimization. Adv. Mater. Res. 662, 957–960 (2013)

    Article  Google Scholar 

  25. Abdi, S., Motamedi, S.A., Sharifian, S.: Task scheduling using Modified PSO Algorithm in cloud computing environment. In: International Conference on Machine Learning, Electrical and Mechanical Engineering, pp. 8–9 (2014)

  26. Al-Olimat, H.S., Alam, M., Green, R., Lee, J.K.: Cloudlet scheduling with particle swarm optimization. In: Communication Systems and Network Technologies (CSNT), 2015 Fifth International Conference on 2015, pp. 991–995. IEEE

  27. Wang, G., Yu, H.C.: Task scheduling algorithm based on improved min–min algorithm in cloud computing environment. Appl. Mech. Mater. 303, 2429–2432 (2013)

    Article  Google Scholar 

  28. Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D.: Cloud task scheduling based on load balancing ant colony optimization. In: Chinagrid Conference (ChinaGrid), 2011 Sixth Annual 2011, pp. 3–9. IEEE

  29. Tawfeek, M.A., El-Sisi, A., Keshk, A.E., Torkey, F.A.: Cloud task scheduling based on ant colony optimization. In: Computer Engineering & Systems (ICCES), 2013 8th International Conference on 2013, pp. 64–69. IEEE

  30. Wen, X., Huang, M., Shi, J.: Study on resources scheduling based on ACO allgorithm and PSO algorithm in cloud computing. In: Distributed Computing and Applications to Business, Engineering & Science (DCABES), 2012 11th International Symposium on 2012, pp. 219–222. IEEE

  31. Yang, H.: Improved ant colony algorithm based on PSO and its application on cloud computing resource scheduling. Adv. Mater. Res. 989, 2192–2195 (2014)

    Article  Google Scholar 

  32. Cho, K.-M., Tsai, P.-W., Tsai, C.-W., Yang, C.-S.: A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud computing. Neural Comput. Appl. 26(6), 1297–1302 (2014)

    Article  Google Scholar 

  33. Liu, C.-Y., Zou, C.-M., Wu, P.: A Task Scheduling algorithm based on genetic algorithm and ant colony optimization in cloud computing. In: Distributed computing and applications to business, engineering and science (DCABES), 2014 13th International Symposium on 2014, pp. 68–72. IEEE

  34. Muthulakshmi, B., Somasundaram, K.: A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1174-z

    Article  Google Scholar 

  35. Abdullahi, M., Ngadi, M.A., Abdulhamid, S.M.: Symbiotic organism search optimization based task scheduling in cloud computing environment. Future Gener. Comput. Syst. 56, 640–650 (2016)

    Article  Google Scholar 

  36. Abdullahi, M., Ngadi, M.A.: Hybrid symbiotic organisms search optimization algorithm for scheduling of tasks on cloud computing environment. PLoS ONE 11(6), e0158229 (2016)

    Article  Google Scholar 

  37. Tsai, J.-T., Fang, J.-C., Chou, J.-H.: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm. Comput. Oper. Res. 40(12), 3045–3055 (2013)

    Article  MATH  Google Scholar 

  38. Guddeti, R.M., Buyya, R.: A Hybrid Bio-Inspired Algorithm for Scheduling and Resource Management in Cloud Environment. IEEE Transactions on Services Computing (2017)

  39. Gabi, D., Ismail, A.S., Zainal, A., Zakaria, Z., Abraham, A.: Orthogonal Taguchi-based cat algorithm for solving task scheduling problem in cloud computing. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2816-4

    Article  Google Scholar 

  40. Moon, Y., Yu, H., Gil, J.-M., Lim, J.: A slave ants based ant colony optimization algorithm for task scheduling in cloud computing environments. Human-Centric Comput. Inf. Sci. 7(1), 28 (2017). https://doi.org/10.1186/s13673-017-0109-2

    Article  Google Scholar 

  41. Gill, S.S., Buyya, R., Chana, I., Singh, M., Abraham, A.: BULLET: particle swarm optimization based scheduling technique for provisioned cloud resources. J. Netw. Syst. Manage. 26(2), 361–400 (2018). https://doi.org/10.1007/s10922-017-9419-y

    Article  Google Scholar 

  42. Snyman, J.: Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms, vol. 97. Springer Science & Business Media, Berlin (2005)

    MATH  Google Scholar 

  43. Fletcher, R., Powell, M.J.: A rapidly convergent descent method for minimization. Comput. J. 6(2), 163–168 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on 2009, pp. 210–214. IEEE

  45. Yang, X.-S.: Cuckoo search and firefly algorithm: overview and analysis. In: Cuckoo Search and Firefly Algorithm. pp. 1–26. Springer (2014)

  46. Burnwal, S., Deb, S.: Scheduling optimization of flexible manufacturing system using cuckoo search-based approach. Int. J. Adv. Manuf. Technol. 64(5–8), 951–959 (2013)

    Article  Google Scholar 

  47. Gunavathi, C., Premalatha, K.: Cuckoo search optimisation for feature selection in cancer classification: a new approach. Int. J. Data Min. Bioinform. 13(3), 248–265 (2015)

    Article  Google Scholar 

  48. Majumder, A., Laha, D.: A new cuckoo search algorithm for 2-machine robotic cell scheduling problem with sequence-dependent setup times. Swarm Evolut. Comput. 28, 131–143 (2016)

    Article  Google Scholar 

  49. Wang, H., Wang, W., Sun, H., Cui, Z., Rahnamayan, S., Zeng, S.: A new cuckoo search algorithm with hybrid strategies for flow shop scheduling problems. Soft Comput. 21(15), 4297–4307 (2016)

    Article  Google Scholar 

  50. Zendaoui, Z., Layeb, A.: Adaptive Cuckoo Search Algorithm for the Bin Packing Problem, pp. 107–120. Springer, Berlin (2016)

    Google Scholar 

  51. Civicioglu, P., Besdok, E.: A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif. Intell. Rev. 39(4), 315–346 (2013)

    Article  Google Scholar 

  52. Civicioglu, P., Besdok, E.: Comparative analysis of the cuckoo search algorithm. In: Yang, S. (ed.) Cuckoo Search and Firefly Algorithm, pp. 85–113. Springer, Cham (2014)

    Chapter  Google Scholar 

  53. Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    Article  Google Scholar 

  54. Gandomi, A.H., Yang, X.-S., Talatahari, S., Deb, S.: Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput. Math. Appl. 63(1), 191–200 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y., Abdulhamid, S.I.M.: Recent advancements in resource allocation techniques for cloud computing environment: a systematic review. Clust. Comput. (2016). https://doi.org/10.1007/s10586-016-0684-4

    Article  Google Scholar 

  56. Mustafa, S., Nazir, B., Hayat, A., Madani, S.A.: Resource management in cloud computing: taxonomy, prospects, and challenges. Comput. Electr. Eng. 47, 186–203 (2015)

    Article  Google Scholar 

  57. Abdulhamid, S.M., Latiff, M.S.A., Idris, I.: Tasks Scheduling technique using league championship algorithm for makespan minimization in IaaS cloud. ARPN J. Eng. Appl. Sci. 9(12), 2528–2533 (2015)

    Google Scholar 

  58. Madni, S.H.H., Latiff, M.S.A., Abdulhamid, S.I.M.: Optimal resource scheduling for IaaS cloud computing using cuckoo search algorithm. Sains Humanika 9(1–3), 71–76 (2017)

    Google Scholar 

  59. Abdulhamid, S.I.M., Latiff, M.S.A., Madni, S.H.H., Abdullahi, M.: Fault tolerance aware scheduling technique for cloud computing environment using dynamic clustering algorithm. Neural Comput. Appl. 29(1), 279–293 (2016)

    Article  Google Scholar 

  60. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software 41(1), 23–50 (2011)

    Google Scholar 

  61. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities. In: High Performance Computing & Simulation, 2009. HPCS’09. International Conference on 2009, pp. 1–11. IEEE

  62. HPC2N: The HPC2N Seth log; 2016. http://www.cs.huji.ac.il/labs/parallel/workload/l_hpc2n/

  63. NASA: The NASA Ames iPCS/860 log; 2016. http://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/

  64. Barquet, A.L., Tchernykh, A., Yahyapour, R.: Performance evaluation of infrastructure as service clouds with SLA constraints. Comput. Sist 17(3), 401–411 (2013)

    Google Scholar 

  65. Zhan, J., Wang, L., Li, X., Shi, W., Weng, C., Zhang, W., Zang, X.: Cost-aware cooperative resource provisioning for heterogeneous workloads in data centers. IEEE Trans. Comput. 62(11), 2155–2168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. Mehrotra, P., Djomehri, J., Heistand, S., Hood, R., Jin, H., Lazanoff, A., Saini, S., Biswas, R.: Performance evaluation of Amazon Elastic Compute Cloud for NASA high-performance computing applications. Concurr. Comput. 28(4), 1041–1055 (2013)

    Article  Google Scholar 

  67. Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J.E., Nesmachnow, S., Drozdov, A.Y.: Online bi-objective scheduling for IaaS clouds ensuring quality of service. J. Grid Comput. 14(1), 5–22 (2016)

    Article  Google Scholar 

  68. Abdulhamid, S.I.M., Latiff, M.S.A., Abdul-Salaam, G., Madni, S.H.H.: Secure scientific applications scheduling technique for cloud computing environment using global league championship algorithm. PloS ONE 11(7), e0158102 (2016)

    Article  Google Scholar 

  69. Abdullahi, M., Ngadi, M.A.: Symbiotic Organism Search optimization based task scheduling in cloud computing environment. Future Gener. Comput. Syst. 56, 640–650 (2016)

    Article  Google Scholar 

  70. Kruekaew, B., Kimpan, W.: Virtual machine scheduling management on cloud computing using artificial bee colony’. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2014, pp. 12–14

  71. Kimpan, W., Kruekaew, B.: Heuristic task scheduling with artificial bee colony algorithm for virtual machines. In: Soft Computing and Intelligent Systems (SCIS) and 17th International Symposium on Advanced Intelligent Systems, 2016 Joint 8th International Conference on 2016, pp. 281–286. IEEE

  72. Chen, Z.-G., Du, K.-J., Zhan, Z.-H., Zhang, J.: Deadline constrained cloud computing resources scheduling for cost optimization based on dynamic objective genetic algorithm. In: 2015 IEEE Congress on Evolutionary Computation (CEC) 2015, pp. 708–714. IEEE

  73. Kashan, A.H.: League championship algorithm: a new algorithm for numerical function optimization. In: Soft Computing and Pattern Recognition, 2009. SOCPAR’09. International Conference of 2009, pp. 43–48. IEEE

  74. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Evolutionary Computation, 2000. Proceedings of the 2000 Congress on 2000, pp. 84–88. IEEE

  75. Marichelvam, M., Prabaharan, T., Yang, X.-S.: Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Appl. Soft Comput. 19, 93–101 (2014)

    Article  Google Scholar 

  76. Ouaarab, A., Ahiod, B., Yang, X.-S.: Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput. Appl. 24(7–8), 1659–1669 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Hamid Hussain Madni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madni, S.H.H., Abd Latiff, M.S., Abdulhamid, S.M. et al. Hybrid gradient descent cuckoo search (HGDCS) algorithm for resource scheduling in IaaS cloud computing environment. Cluster Comput 22, 301–334 (2019). https://doi.org/10.1007/s10586-018-2856-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2856-x

Keywords

Navigation