Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A spreading activation algorithm of spatial big data retrieval based on the spatial ontology model

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the rapid growth of spatial data, traditional cause-effect analysis and conditional retrieval fall short in the era of big data. Associative retrieval is more reasonable and feasible. To promote the associative retrieval of spatial big data, this paper investigates the combination of the spreading activation (SA) algorithm and spatial ontology model. Different types of semantic links are considered to improve the relevance of the activation-spread process and ensure the accuracy of the search results. We propose an incremental SA algorithm to search different types of information nodes gradually in the spatial ontology knowledge space. Some examples and a prototype are discussed in the paper. We trust that this work will contribute to the improvement of the SA algorithm in associative retrieval of spatial big data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Manyika, J., Chui, M., Brown, B. et al.: Big data: the next frontier for innovation, competition and productivity. McKinsey Global Institute. http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation(2011). Accessed 26 June 2014

  2. Shu-Liang, W., Gang-Yi, D., Ming, Z.: On spatial data mining under big data. J. CAEIT 8(1), 8–17 (2013)

    Google Scholar 

  3. Wang, L., Ke, L., Liu, P., Ranjan, R., Chen, L.: Ik-svd: dictionary learning for spatial big data via incremental atom update. Comput. Sci. Eng. 99(1). doi:10.1109/MCSE.2014.52. (2014 PrePrints)

  4. Shekhar, S., Evans, M.R., Gunturi, V., Yang, K.S.: Spatial big-data challenges intersecting mobility and cloud computing. The 2012 NSF workshop on social networks and mobility in the cloud, Arlington, pp. 1–9 (2012)

  5. Ma, A.: Remote sensing information model and geographic mathematics. Acta Sci. Nat. Univ. Pekin. 37(4), 557–562 (2001)

    Google Scholar 

  6. Cheng, P., Jinliang, W., Shen, X., Feng, C., Wang, X.: A study on remote sensing information model of regional forest biomass. Remote Sens. Technol. Appl. 27(5), 722–727 (2012)

    Google Scholar 

  7. Hong-Bin, M., Ke, W., Tuan-Xue, M.: Spatial data mining big data era review. Geomat. Spat. Inf. Technol. 37(7), 19–22 (2014)

    Google Scholar 

  8. Mayer-Schonberger, V., Cukier, K.: Big Data: A Revolution That Will Transfer How We Live. Work and Think. John Murray, London (2013)

    Google Scholar 

  9. Sun, S., Liu, D., Li, G., Yu, W.: The semantic retrieval of spatial data service based on ontology in SIG. The ISPRS joint workshop on geospatial data infrastructure: from data acquisition and updating to smarter services, Guilin, pp. 62–67 (2011)

  10. Lachica, R., Karabeg, D., Rudan, S.: Quality, relevance and importance in information retrieval with fuzzy semantic networks. In: The 4th international conference on topic maps research and applications, Germany, pp. 77–93 (2008)

  11. Rocha C.: A hybrid approach for searching in the semantic web. ACM 13th international conference on www. New York, pp. 374–383 (2004)

  12. Aswath D., Ahmed S.T., D’Cunha J., Davulcu H.: Boosting item keyword search with spreading activation. In: The 2005 IEEE/WIC/ACM international conference on web intelligence, Los Alamitos, pp. 704–707 (2005)

  13. Marko, A.: Rodriguez: grammar-based random walkers in semantic networks. Knowl. Based Syst. 21(7), 727–739 (2008)

    Article  Google Scholar 

  14. Chen, D., Wang, L., Zomaya, A., Dou, M., Chen, J., Deng, Z., Hariri, S.: Parallel simulation of complex evacuation scenarios with adaptive agent models. IEEE Trans. Parallel Distrib. Syst (2014). doi:10.1109/TPDS.2014.2311805

  15. Segaran, T., Hammerbacher, J.: Beautiful Data: The Stories Behind Elegant Data Solutions. O’Reilly Media, Sebastopol (2011)

    Google Scholar 

  16. Wang, L., Tao, J., Ranjan, R., Marten, H., Streit, A., Chen, J., Chen, D.: G-hadoop: MapReduce across distributed data centers for data-intensive computing. Future Gener. Comp. Syst. 29(3), 739–750 (2013)

    Article  Google Scholar 

  17. Ma, Y., Wang, L., Zomaya, A.Y., Chen, D., Ranjan, R.: Task-tree basedlarge-scale mosaicking for massive remote sensed imageries with dynamic DAG scheduling. IEEE Trans. Parallel Distrib. Syst. 25(8), 2126–2137 (2014)

    Article  Google Scholar 

  18. Liu, P., Yuan, T., Ma, Y., Wang, L., Liu, D., Yue, S., Kolodziej, J.: Parallel processing of massive remote sensing images in a GPU architecture. Comput. Inf. 33(1), 197–217 (2014)

    Google Scholar 

  19. Wang, L., Ma, Y., Ranjan, R., Zomaya, A.Y., Chen, D.: A parallel file system with application-aware data layout policies in digital earth. IEEE Trans. Parallel Distrib. Syst. 99(1), (2014 PrePrints). doi:10.1109/TPDS.2014.2322362

  20. Jorge, G.L., Jose, E.L., Jose, M.A.: A MapReduce implementation of the spreading activation algorithm for processing large knowledge bases based on semantic networks. Int. J. Knowl. Soc. Res. 3(4), 47–56 (2012)

    Article  Google Scholar 

  21. Dan, C., Li, X., Wang, L., Khan, S., Wang, J., Zeng, K., Cai, C.: Fast and scalable multi-way analysis of massive neural data. IEEE Trans. Comp. (2014). doi:10.1109/TC.2013.2295806

  22. Lee, M., Kim, W., Park, S.: Searching and ranking method of relevant resources by user intention on the semantic Web. Expert Syst. Appl. 39(4), 4111–4121 (2012)

    Article  MathSciNet  Google Scholar 

  23. Dan, C., Li, X., Cui, D., Wang, L., Lu, D.: Global synchronization measurement of multivariate neural signals with massively parallel nonlinear interdependence analysis. IEEE Trans Neural Syst. Rehabil. Eng. 22(1), 33–34 (2014)

    Article  Google Scholar 

  24. Chen, D., Li, D., Xiong, M., Bao, H., Li, X.: GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia. IEEE Trans. Inf. Technol. Biomed. 14(6), 1417–1427 (2010)

    Article  Google Scholar 

  25. Sandeep, V., Mohit, P., Minal, B.: Semantic search using constrained spread activation for semantic digital library. Distributed Comput. Internet Technol., Lecture notes in computer science 7154, 274–275 (2012)

  26. Surhone, L.M., Tennoe, M.T., Henssonow, S.F.: Spreading Activation. Betascript, Mauritius (2010)

    Google Scholar 

  27. Griffith, J., Riordan, C.O., Sorensen, H.: A constrained spreading activation approach to collaborative filtering. knowledge-based intelligent information and engineering systems, Lecture notes in computer science 4253, 766–773 (2006)

  28. Crestani, F., Lee, P.L.: Searching the Web by constrained spreading activation. Inf. Proces. Manag. 36(4), 585–605 (2000)

    Article  Google Scholar 

  29. Rocha, C., Schwabe, D., de Aragao, M.P.: A hybrid approach for searching in the semantic web. In: The 13th international conference on world wide web, New York, pp. 374–383 (2004)

  30. Yang, X., Sun, H.: A hybrid retrieval method based on ontology. Comput. Technol. Dev. 19(1), 125–130 (2009)

    MathSciNet  Google Scholar 

  31. Schumacher, K., Sintek, M., Sauermann, L.: Combining fact and document retrieval with spreading activation for semantic desktop search. In: The 5th European semantic web conference (ESWC’08), Spain, pp. 569–583 (2008)

  32. Md. Akim, N., Dix, A., Katifori, A. et al.: Spreading activation for web scale reasoning: promise and problems. ACM WebSci’11, Germany, pp. 1–4 (2011)

  33. Shekhar, S.: Spatial big data challenges. applications and algorithms, Durham, Keynotes in the ARO/NSF Workshop on big data at large (2012)

  34. Sun, S.: A novel semantic quantitative description method based on possibilistic logic. J. Intell. & Fuzzy Syst. 25(4), 931–940 (2013)

    MATH  Google Scholar 

  35. Sun, S., Liu, D., Li, G.: The application of a hierarchical tree method to ontology knowledge engineering. Int. J. Softw. Eng. Knowl. Eng. 22(4), 571–593 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 61303130 and 61379116) and the Natural Science Foundation of Hebei Province (No. F2014203093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Gong, J., He, J. et al. A spreading activation algorithm of spatial big data retrieval based on the spatial ontology model. Cluster Comput 18, 563–575 (2015). https://doi.org/10.1007/s10586-014-0417-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-014-0417-5

Keywords

Navigation