Abstract
With the rapid growth of spatial data, traditional cause-effect analysis and conditional retrieval fall short in the era of big data. Associative retrieval is more reasonable and feasible. To promote the associative retrieval of spatial big data, this paper investigates the combination of the spreading activation (SA) algorithm and spatial ontology model. Different types of semantic links are considered to improve the relevance of the activation-spread process and ensure the accuracy of the search results. We propose an incremental SA algorithm to search different types of information nodes gradually in the spatial ontology knowledge space. Some examples and a prototype are discussed in the paper. We trust that this work will contribute to the improvement of the SA algorithm in associative retrieval of spatial big data.
Similar content being viewed by others
References
Manyika, J., Chui, M., Brown, B. et al.: Big data: the next frontier for innovation, competition and productivity. McKinsey Global Institute. http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation(2011). Accessed 26 June 2014
Shu-Liang, W., Gang-Yi, D., Ming, Z.: On spatial data mining under big data. J. CAEIT 8(1), 8–17 (2013)
Wang, L., Ke, L., Liu, P., Ranjan, R., Chen, L.: Ik-svd: dictionary learning for spatial big data via incremental atom update. Comput. Sci. Eng. 99(1). doi:10.1109/MCSE.2014.52. (2014 PrePrints)
Shekhar, S., Evans, M.R., Gunturi, V., Yang, K.S.: Spatial big-data challenges intersecting mobility and cloud computing. The 2012 NSF workshop on social networks and mobility in the cloud, Arlington, pp. 1–9 (2012)
Ma, A.: Remote sensing information model and geographic mathematics. Acta Sci. Nat. Univ. Pekin. 37(4), 557–562 (2001)
Cheng, P., Jinliang, W., Shen, X., Feng, C., Wang, X.: A study on remote sensing information model of regional forest biomass. Remote Sens. Technol. Appl. 27(5), 722–727 (2012)
Hong-Bin, M., Ke, W., Tuan-Xue, M.: Spatial data mining big data era review. Geomat. Spat. Inf. Technol. 37(7), 19–22 (2014)
Mayer-Schonberger, V., Cukier, K.: Big Data: A Revolution That Will Transfer How We Live. Work and Think. John Murray, London (2013)
Sun, S., Liu, D., Li, G., Yu, W.: The semantic retrieval of spatial data service based on ontology in SIG. The ISPRS joint workshop on geospatial data infrastructure: from data acquisition and updating to smarter services, Guilin, pp. 62–67 (2011)
Lachica, R., Karabeg, D., Rudan, S.: Quality, relevance and importance in information retrieval with fuzzy semantic networks. In: The 4th international conference on topic maps research and applications, Germany, pp. 77–93 (2008)
Rocha C.: A hybrid approach for searching in the semantic web. ACM 13th international conference on www. New York, pp. 374–383 (2004)
Aswath D., Ahmed S.T., D’Cunha J., Davulcu H.: Boosting item keyword search with spreading activation. In: The 2005 IEEE/WIC/ACM international conference on web intelligence, Los Alamitos, pp. 704–707 (2005)
Marko, A.: Rodriguez: grammar-based random walkers in semantic networks. Knowl. Based Syst. 21(7), 727–739 (2008)
Chen, D., Wang, L., Zomaya, A., Dou, M., Chen, J., Deng, Z., Hariri, S.: Parallel simulation of complex evacuation scenarios with adaptive agent models. IEEE Trans. Parallel Distrib. Syst (2014). doi:10.1109/TPDS.2014.2311805
Segaran, T., Hammerbacher, J.: Beautiful Data: The Stories Behind Elegant Data Solutions. O’Reilly Media, Sebastopol (2011)
Wang, L., Tao, J., Ranjan, R., Marten, H., Streit, A., Chen, J., Chen, D.: G-hadoop: MapReduce across distributed data centers for data-intensive computing. Future Gener. Comp. Syst. 29(3), 739–750 (2013)
Ma, Y., Wang, L., Zomaya, A.Y., Chen, D., Ranjan, R.: Task-tree basedlarge-scale mosaicking for massive remote sensed imageries with dynamic DAG scheduling. IEEE Trans. Parallel Distrib. Syst. 25(8), 2126–2137 (2014)
Liu, P., Yuan, T., Ma, Y., Wang, L., Liu, D., Yue, S., Kolodziej, J.: Parallel processing of massive remote sensing images in a GPU architecture. Comput. Inf. 33(1), 197–217 (2014)
Wang, L., Ma, Y., Ranjan, R., Zomaya, A.Y., Chen, D.: A parallel file system with application-aware data layout policies in digital earth. IEEE Trans. Parallel Distrib. Syst. 99(1), (2014 PrePrints). doi:10.1109/TPDS.2014.2322362
Jorge, G.L., Jose, E.L., Jose, M.A.: A MapReduce implementation of the spreading activation algorithm for processing large knowledge bases based on semantic networks. Int. J. Knowl. Soc. Res. 3(4), 47–56 (2012)
Dan, C., Li, X., Wang, L., Khan, S., Wang, J., Zeng, K., Cai, C.: Fast and scalable multi-way analysis of massive neural data. IEEE Trans. Comp. (2014). doi:10.1109/TC.2013.2295806
Lee, M., Kim, W., Park, S.: Searching and ranking method of relevant resources by user intention on the semantic Web. Expert Syst. Appl. 39(4), 4111–4121 (2012)
Dan, C., Li, X., Cui, D., Wang, L., Lu, D.: Global synchronization measurement of multivariate neural signals with massively parallel nonlinear interdependence analysis. IEEE Trans Neural Syst. Rehabil. Eng. 22(1), 33–34 (2014)
Chen, D., Li, D., Xiong, M., Bao, H., Li, X.: GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia. IEEE Trans. Inf. Technol. Biomed. 14(6), 1417–1427 (2010)
Sandeep, V., Mohit, P., Minal, B.: Semantic search using constrained spread activation for semantic digital library. Distributed Comput. Internet Technol., Lecture notes in computer science 7154, 274–275 (2012)
Surhone, L.M., Tennoe, M.T., Henssonow, S.F.: Spreading Activation. Betascript, Mauritius (2010)
Griffith, J., Riordan, C.O., Sorensen, H.: A constrained spreading activation approach to collaborative filtering. knowledge-based intelligent information and engineering systems, Lecture notes in computer science 4253, 766–773 (2006)
Crestani, F., Lee, P.L.: Searching the Web by constrained spreading activation. Inf. Proces. Manag. 36(4), 585–605 (2000)
Rocha, C., Schwabe, D., de Aragao, M.P.: A hybrid approach for searching in the semantic web. In: The 13th international conference on world wide web, New York, pp. 374–383 (2004)
Yang, X., Sun, H.: A hybrid retrieval method based on ontology. Comput. Technol. Dev. 19(1), 125–130 (2009)
Schumacher, K., Sintek, M., Sauermann, L.: Combining fact and document retrieval with spreading activation for semantic desktop search. In: The 5th European semantic web conference (ESWC’08), Spain, pp. 569–583 (2008)
Md. Akim, N., Dix, A., Katifori, A. et al.: Spreading activation for web scale reasoning: promise and problems. ACM WebSci’11, Germany, pp. 1–4 (2011)
Shekhar, S.: Spatial big data challenges. applications and algorithms, Durham, Keynotes in the ARO/NSF Workshop on big data at large (2012)
Sun, S.: A novel semantic quantitative description method based on possibilistic logic. J. Intell. & Fuzzy Syst. 25(4), 931–940 (2013)
Sun, S., Liu, D., Li, G.: The application of a hierarchical tree method to ontology knowledge engineering. Int. J. Softw. Eng. Knowl. Eng. 22(4), 571–593 (2012)
Acknowledgments
This work is supported by the National Natural Science Foundation of China (Nos. 61303130 and 61379116) and the Natural Science Foundation of Hebei Province (No. F2014203093).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sun, S., Gong, J., He, J. et al. A spreading activation algorithm of spatial big data retrieval based on the spatial ontology model. Cluster Comput 18, 563–575 (2015). https://doi.org/10.1007/s10586-014-0417-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-014-0417-5