Abstract
Nowadays, scientists and companies are confronted with multiple competing goals such as makespan in high-performance computing and economic cost in Clouds that have to be simultaneously optimised. Multi-objective scheduling of scientific applications in these systems is therefore receiving increasing research attention. Most existing approaches typically aggregate all objectives in a single function, defined a-priori without any knowledge about the problem being solved, which negatively impacts the quality of the solutions. In contrast, Pareto-based approaches having as outcome a set of (nearly) optimal solutions that represent a tradeoff among the different objectives, have been scarcely studied. In this paper, we analyse MOHEFT, a Pareto-based list scheduling heuristic that provides the user with a set of tradeoff optimal solutions from which the one that better suits the user requirements can be manually selected. We demonstrate the potential of our method for multi-objective workflow scheduling on the commercial Amazon EC2 Cloud. We compare the quality of the MOHEFT tradeoff solutions with two state-of-the-art approaches using different synthetic and real-world workflows: the classical HEFT algorithm for single-objective scheduling and the SPEA2* genetic algorithm used in multi-objective optimisation problems. The results demonstrate that our approach is able to compute solutions of higher quality than SPEA2*. In addition, we show that MOHEFT is more suitable than SPEA2* for workflow scheduling in the context of commercial Clouds, since the genetic-based approach is unable of dealing with some of the constraints imposed by these systems.
Similar content being viewed by others
Notes
These prices only refer to the Standard On-Demand Instances (September 2013).
References
Alexandru, I., Ostermann, S., Yigitbasi, M., Prodan, R., Fahringer, T., Epema, D.: Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel Distrib. Syst. 22(6), 931–945 (2010)
Assayad, I., Girault, A., Kalla, H.: A bi-criteria scheduling heuristics for distributed embedded systems under reliability and real-time constraints. In: International Conference on Dependable Systems and Networks (DSN’04), Firenze, Italy. IEEE Press, New York (2003)
Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: Wien2k: an augmented plane wave plus local orbitals program for calculating crystal properties. Tech. rep., Institute of Physical and Theoretical Chemistry, TU Vienna (2001)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)
Canon, L.C., Emmanuel, E.: MO-Greedy: an extended beam-search approach for solving a multi-criteria scheduling problem on heterogeneous machines. In: International Heterogeneity in Computing (2011)
Coello, C.A.C., Lamont, G.B., Van Veldhuisen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Berlin (2007)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2000)
Durillo, J., Fard, H., Prodan, R.: Moheft: a multi-objective lilst-based method for workflow scheduling. In: 4th IEEE International Conference on Cloud Computing Technology and Science (2012)
Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)
Fard, H., Prodan, R., Barrionuevo, J., Fahringer, T.: A multi-objective approach for workflow scheduling in heterogeneous environments. In: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 300–309 (2012). doi:10.1109/CCGrid.2012.114
Garg, R., Singh, A.K.: Reference point based multi-objective optimization to workflow grid scheduling. Int. J. Appl. Evol. Comput. 3(1), 80–99 (2012)
Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling parallel applications on utility grids: time and cost trade-off management. In: Proceedings of the Thirty-Second Australasian Conference on Computer Science (ACSC ’09), Darlinghurst, Australia, vol. 91, pp. 151–160. Australian Computer Society, Sydney (2009)
Hakem, M., Butelle, F.: Reliability and scheduling on systems subject to failures. In: Proceedings of the 2007 International Conference on Parallel Processing (ICPP ’07), p. 38. IEEE Comput. Soc., Washington (2007)
Ilavarsan, E., Thambidurai, P.: Low complexity performance effective task scheduling algorithm for heterogeneous computing environments. J. Comput. Sci. 3(2), 94–103 (2007)
Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Albi, E.G.T., Zomaya, A.Y., Tuyttens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. 71, 1497–1508 (2011)
Plachetka, T.: POVRAY—persistence of vision parallel raytracer. In: Proceedings of Computer Graphics International ’98, pp. 123–129 (1998)
Sakellariou, R., Zhao, H., Tsiakkouri, E., Dikaiakos, M.D.: Scheduling workflows with budget constraints. In: Gorlatch, S., Danelutto, M. (eds.) Integrated Research in Grid Computing. CoreGrid Series. Springer, Berlin (2007)
Singh, D., Garg, R.: A robust multi-objective optimization to workflow scheduling for dynamic grid. In: Proceedings of the International Conference on Advances in Computing and Artificial Intelligence (ACAI ’11), pp. 183–188. ACM, New York (2011)
Singh, M.P., Vouk, M.A.: Scientific Workflows: Scientific Computing Meets Transactional Workflows (1996)
Talukder, A.K.M.K.A., Kirley, M., Buyya, R.: Multiobjective differential evolution for scheduling workflow applications on global grids. Evolution 21(13), 1742–1756 (2009)
Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific Workflows for Grids. Springer, New York (2006)
Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)
Ullman, J.: Np-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975)
Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid computing. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in Distributed Computing Environments, pp. 109–153. Springer, Berlin (2008)
Yu, J., Kirley, M., Buyya, R.: Multi-objective planning for workflow execution on grids. In: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing (GRID ’07), pp. 10–17. IEEE Comput. Soc., Washington (2007)
Zeng, J.t., Xia, J.w., Li, J.z., Li, M.h.: Multi-objective optimal grid workflow scheduling with qos constraints. In: Cao, B., Li, T.F., Zhang, C.Y. (eds.) Fuzzy Information and Engineering, Volume 2. Advances in Intelligent and Soft Computing, vol. 62, pp. 839–847. Springer, Berlin (2009)
Zitzler, E., Laumanns, M., Thiele, L.: Spea2: improving the strength pareto evolutionary algorithm. Tech. rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Durillo, J.J., Prodan, R. Multi-objective workflow scheduling in Amazon EC2. Cluster Comput 17, 169–189 (2014). https://doi.org/10.1007/s10586-013-0325-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-013-0325-0