Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Nuclear architecture of resting and LPS-stimulated porcine neutrophils by 3D FISH

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Neutrophils are essential components of the innate immune system due to their ability to kill and phagocytose invading microbes. They possess a lobulated nucleus and are capable of extensive and complex changes in response to bacterial stimulation. The aim of our study was to investigate whether the 3D nuclear organization of porcine neutrophils was modified upon stimulation. The organization of centromeres, telomeres, and chromosome territories (chromosomes 2, 3, 7, 8, 12, 13, and 17) was studied on structurally preserved nuclei using 3D fluorescence in situ hybridization, confocal microscopy, and image analysis. By differential labeling of centromeres of acrocentric and metacentric/submetacentric chromosomes, we showed that centromeres associated to form chromocenters but did so preferentially between chromosomes with the same morphology. Upon activation, some of these chromocenters dispersed. Telomeres were also found to form clusters, but their number remained unchanged in lipopolysaccharide-stimulated neutrophils. The analysis of the position of chromocenters and telomere clusters showed a more internal location of the latter compared to the former. The analysis of chromosome territories revealed that homologs were distributed randomly among lobes whatever the cell’s status. The volume of these territories was not proportional to chromosome length, and some chromosomes (chr 3, 12, 13, and 17) were more prone to decondensation when neutrophils were stimulated. Thus, our study demonstrated that activation of neutrophils resulted in several modifications of their nuclear architecture: a decrease in the number of non-acrocentric chromocenters and the decondensation of several chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CT:

Chromosome territory

DAPI:

4′,6′ Diamidino-2-phenyl indole

3D FISH:

Three-dimensional fluorescence in situ hybridization

DOP-PCR:

Degenerate oligonucleotide primed polymerase chain reaction

FITC:

Fluorescein isothiocyanate

LPS:

Lipopolysaccharide

PNA:

Peptide nucleic acid

SNR:

Signal-to-noise ratio

SSC:

Sus scrofa domestica

References

  • Adega F, Chaves R, Guedes-Pinto H (2005) Chromosome restriction enzyme digestion in domestic pig (Sus scrofa) constitutive heterochromatin arrangement. Genes Genet Syst 80:49–56

    Article  CAS  PubMed  Google Scholar 

  • Alcobia I, Dilão R, Parreira L (2000) Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood 95:1608–1615

    CAS  PubMed  Google Scholar 

  • Amrichová J, Lukásová E, Kozubek S, Kozubek M (2003) Nuclear and territorial topography of chromosome telomeres in human lymphocytes. Exp Cell Res 289:11–26

    Article  PubMed  Google Scholar 

  • Aquiles Sanchez J, Karni RJ, Wangh LJ (1997) Fluorescent in situ hybridization (FISH) analysis of the relationship between chromosome location and nuclear morphology in human neutrophils. Chromosoma 106:168–177

    Article  CAS  PubMed  Google Scholar 

  • Bártová E, Kozubek S, Jirsová P, Kozubek M, Lukásová E, Skalníková M, Cafourková A, Koutná I, Paseková R (2001) Higher-order chromatin structure of human granulocytes. Chromosoma 110:360–370

    Article  PubMed  Google Scholar 

  • Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10:149–152

    Article  CAS  PubMed  Google Scholar 

  • Brown KE, Amoils S, Horn JM, Buckle VJ, Higgs DR, Merkenschlager M, Fisher AG (2001) Expression of alpha- and beta-globin genes occurs within different nuclear domains in haemopoietic cells. Nat Cell Biol 3:602–306

    Article  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  • Cremer M, Küpper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809–820

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18:307–316

    Article  CAS  PubMed  Google Scholar 

  • Daniel A, St Heaps L (2004) Chromosome loops arising from intrachromosomal tethering of telomeres occur at high frequency in G1 (non-cycling) mitotic cells: implications for telomere capture. Cell Chromosome 3:3

    Article  PubMed  Google Scholar 

  • Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114:212–229

    Article  PubMed  Google Scholar 

  • Gué M, Messaoudi C, Sun JS, Boudier T (2005) Smart 3D-FISH: Automation of distance analysis in nuclei of interphase cells by image processing. Cytometry A 67:18–26

    PubMed  Google Scholar 

  • Haaf T, Schmid M (1991) Chromosome topology in mammalian interphase nuclei. Exp Cell Res 192:325–332

    Article  CAS  PubMed  Google Scholar 

  • Hepperger C, Mayer A, Merz J, Vanderwall DK, Dietzel S (2009) Parental genomes mix in mule and human cell nuclei. Chromosoma 118:335–347

    Article  CAS  PubMed  Google Scholar 

  • Karni RJ, Wangh LJ, Sanchez JA (2001) Nonrandom location and orientation of the inactive X chromosome in human neutrophil nuclei. Chromosoma 110:267–274

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, McQueen PG, Lichtman MK, Shevach EM, Parada LA, Misteli T (2004) Spatial genome organization during T-cell differentiation. Cytogenet Genome Res 105:292–301

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi SD, Braughton KR, Whitney AR, Voyich JM, Schwan TG, Musser JM, DeLeo FR (2003) Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci USA 100:10948–10953

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Tanabe H, Yoshida K, Oikawa K, Saito A, Kiyuna T, Mizusawa H, Mukai K (2004) Alteration of chromosome positioning during adipocyte differentiation. J Cell Sci 117:5897–5903

    Article  CAS  PubMed  Google Scholar 

  • Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  Google Scholar 

  • Lloyd AR, Oppenheim JJ (1992) Poly’s lament: the neglected role of the polymorphonuclear neutrophil in the afferent limb of the immune response. Immunol Today 13:169

    Article  CAS  PubMed  Google Scholar 

  • Lunney JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3:179–184

    CAS  PubMed  Google Scholar 

  • Manuelidis L (1990) A view of interphase chromosomes. Science 250:1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Mayer R, Brero A, von Hase J, Schroeder T, Cremer T, Dietzel S (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6:44

    Article  PubMed  Google Scholar 

  • Meyer-Ficca M, Müller-Navia J, Scherthan H (1998) Clustering of pericentromeres initiates in step 9 of spermiogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus. J Cell Sci 111:1363–1370

    CAS  PubMed  Google Scholar 

  • Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O'brien SJ, Pevzner PA, Lewin HA (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617

    Article  CAS  PubMed  Google Scholar 

  • Nagele RG, Velasco AQ, Anderson WJ, McMahon DJ, Thomson Z, Fazekas J, Wind K, Lee H (2001) Telomere associations in interphase nuclei: possible role in maintenance of interphase chromosome topology. J Cell Sci 114:377–388

    CAS  PubMed  Google Scholar 

  • Newburger PE, Subrahmanyam YV, Weissman SM (2000) Global analysis of neutrophil gene expression. Curr Opin Hematol 7:16–20

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D and the R Core team (2008) nlme: linear and nonlinear mixed effects models. R package version 3.1-89

  • Pita M, Garcia-Casado P, Toro MA, Gosálvez J (2008) Differential expansion of highly repeated DNA sequences in the swine subgenomes. J Zool Syst Evol Res 46:186–189

    Article  Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org. ISBN 3-900051-07-0

    Google Scholar 

  • Rogel-Gaillard C, Bourgeaux N, Save JC, Renard C, Coullin P, Pinton P, Yerle M, Vaiman M, Chardon P (1997a) Construction of a swine YAC library allowing an efficient recovery of unique and centromeric repeated sequences. Mamm Genome 8:186–192

    Article  CAS  PubMed  Google Scholar 

  • Rogel-Gaillard C, Hayes H, Coullin P, Chardon P, Vaiman M (1997b) Swine centromeric DNA repeats revealed by primed in situ (PRINS) labeling. Cytogenet Cell Genet 79:79–84

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JA, Wangh LJ (1999) New insights into the mechanisms of nuclear segmentation in human neutrophils. J Cell Biochem 73:1–10

    Article  CAS  PubMed  Google Scholar 

  • Solovei I, Schermelleh L, Düring K, Engelhardt A, Stein S, Cremer C, Cremer T (2004) Differences in centromere positioning of cycling and postmitotic human cell types. Chromosoma 112:410–423

    Article  PubMed  Google Scholar 

  • Solov'eva L, Svetlova M, Bodinski D, Zalensky AO (2004) Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosome Res 12:817–823

    Article  PubMed  Google Scholar 

  • Soutoglou E, Misteli T (2008) On the contribution of spatial genome organization to cancerous chromosome translocations. J Natl Cancer Inst Monogr 39:16–19

    Article  CAS  PubMed  Google Scholar 

  • Stadler S, Schnapp V, Mayer R, Stein S, Cremer C, Bonifer C, Cremer T, Dietzel S (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5:44

    Article  PubMed  Google Scholar 

  • Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13(3):718–725

    Article  CAS  PubMed  Google Scholar 

  • Tsukahara Y, Lian Z, Zhang X, Whitney C, Kluger Y, Tuck D, Yamaga S, Nakayama Y, Weissman SM, Newburger PE (2003) Gene expression in human neutrophils during activation and priming by bacterial lipopolysaccharide. J Cell Biochem 89:848–861

    Article  CAS  PubMed  Google Scholar 

  • Weierich C, Brero A, Stein S, von Hase J, Cremer C, Cremer T, Solovei I (2003) Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes. Chromosome Res 11:485–502

    Article  CAS  PubMed  Google Scholar 

  • Yerle M, Schmitz A, Milan D, Chaput B, Monteagudo L, Vaiman M, Frelat G, Gellin J (1993) Accurate characterization of porcine bivariate flow karyotype by PCR and fluorescence in situ hybridization. Genomics 16:97–103

    Article  CAS  PubMed  Google Scholar 

  • Yerle M, Goureau A, Gellin J, Le Tissier P, Moran C (1994) Rapid mapping of cosmid clones on pig chromosomes by fluorescence in situ hybridization. Mamm Genome 5:34–37

    Article  CAS  PubMed  Google Scholar 

  • Zalenskaya IA, Zalensky AO (2004) Non-random positioning of chromosomes in human sperm nuclei. Chromosome Res 12:163–173

    Article  CAS  PubMed  Google Scholar 

  • Zalensky AO, Tomilin NV, Zalenskaya IA, Teplitz RL, Bradbury EM (1997) Telomere–telomere interactions and candidate telomere binding protein(s) in mammalian sperm cells. Exp Cell Res 232:29–41

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Thomas Boudier for his advice and help in the implementation of Smart 3D-FISH software. We are grateful to Drs. Janice Britton-Davidian, Eve Devinoy, and Gauthier Dobigny for very helpful and stimulating discussions on the manuscript. This research was supported in part by the GENANIMAL program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Yerle-Bouissou.

Additional information

Responsible Editor: Fengtang Yang.

Appendix. Supplementary data

Appendix. Supplementary data

Supplementary data (figures) associated with this article can be found at https://www-lgc.toulouse.inra.fr/internet/index.php/Supplemental-data/View-category.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yerle-Bouissou, M., Mompart, F., Iannuccelli, E. et al. Nuclear architecture of resting and LPS-stimulated porcine neutrophils by 3D FISH. Chromosome Res 17, 847–862 (2009). https://doi.org/10.1007/s10577-009-9074-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9074-6

Keywords

Navigation