The paper reviews most popular approaches to the development of applied methods of combinatorial optimization. A number of characteristics and criteria are proposed that underlie the classification of approximate algorithms. The classification continues the previous investigations in combinatorial optimization and allows determining key components of computational schemes used in constructing efficient hybrid metaheuristics.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
T. Stützle, “Local search algorithms for combinatorial problems — analysis, improvements and new applications,” PhD. Thesis, Technische Univ. Darmstadt, Darmstadt (1998).
R. J. M. Vaessens, E. H. L. Aarts, and J. K. Lenstra, “A local search template,” Comput. Oper. Res., 25, No. 11, 969–979 (1998).
M. Birattari, L. Paquete, T. Stützle, and K. Varrentrapp, “Classification of metaheuristics and design of experiments for the analysis of components,” Techn. Rep., N AIDA-01-05, Techn. Univ. Darmstadt, Darmstadt (2001).
C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: overview and conceptual comparison,” ACM Computing Surveys, 35, No. 3, 268–308 (2003).
M. Gendreau and J.-Y. Potvin, “Metaheuristics in combinatorial optimization,” Ann. Oper. Res., 140, No. 1, 189–213 (2005).
V. K. Leont’ev, “Discrete optimization,” J. Comp. Math. Math. Phys., 47, No. 2, 328–340 (2007).
H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and Applications, Morgan Kaufmann Publ., San Francisco (2005).
G. R. Raidl, “A unified view on hybrid metaheuristics,” in: Lect. Notes Comput. Sci., 4030, Springer-Verlag, Berlin (2006), pp. 1–12.
L. F. Gulyanitskii and I. V. Sergienko, “Metaheuristic downhill simplex method in combinatorial optimization,” Cybern. Syst. Analysis, 43, No. 6, 822–829 (2007).
C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Englewood Cliffs, Prentice Hall (1982).
I. V. Sergienko, Mathematical Models and Methods to Solve Discrete Optimization Problems [in Russian], Naukova Dumka, Kyiv (1988).
V. S. Mikhalevich and A. I. Kuksa, Methods of Sequential Optimization in Discrete Network Problems of Optimal Resource Allocation [in Russian], Nauka, Moscow (1983).
A. A. Pavlov and E. B. Misyura, “Efficient accurate PDS-algorithm to solve a total delay problem for one device,” Systemni Doslidzh. Inform. Tekhnol., No. 4, 30–59 (2004).
P. Pardalos and M. G. C. Resende (eds.), Handbook of Applied Optimization, Oxford Univ. Press, Oxford (2002).
T. F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, Boca Raton (FL) (2007).
I. V. Sergienko and M. F. Kaspshitskaya, Models and Methods for Computer Solution of Combinatorial Optimization Problems [in Russian], Naukova Dumka, Kyiv (1981).
I. V. Sergienko and V. P. Shilo, Discrete Optimization Problems [in Russian], Naukova Dumka, Kyiv (2003).
K. A. De Jong, Evolutionary Computation: A Unified Approach, MIT Press, Cambridge (MA) (2006).
G. Leguizamon, C. Blum, and E. Alba. “Evolutionary computation,” in: T.F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, Boca Raton (FL) (2007), pp. 372–386.
J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, San Francisco (CA) (2001).
S. Khuller, B. Raghavachari, and N. E. Young, “Greedy methods,” in: T.F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, Boca Raton (FL) (2007), pp. 67–80.
I. V. Sergienko, “A method to solve extremum problems,” Avtomatika, No. 5, 15–21 (1964).
Yu. A. Kochetov, “Computational bounds for local search in combinatorial optimization,” J. Comp. Math. Math. Phys., 48, No. 5, 747–763 (2008).
L. F. Hulianytskyi and A. N. Khodzinskii, “Features of the implementation of branch-and-bound algorithm and descent-vector method in VEKTOR–1B,” in: Computational Aspects in Application Software Packages [in Russian], Inst. Cybern. AS USSR, Kyiv (1979), pp. 25–30.
N. Mladenović and P. Hansen, “Variable neighbourhood search,” Comput. Oper. Res., No. 24, 1097–1100 (1997).
P. Hansen, N. Mladenovic, and J. A. Moreno-Pérez, “Variable neighbourhood search: methods and applications,” Quarterly J. Oper. Res., 6, No. 4, 319–360 (2008).
C. Voudouris and E. P. K. Tsang, “Guided local search,” in: F. Glover (ed.), Handbook of Metaheuristics, Kluwer Acad. Publ., Norwell (MA) (2003), pp. 185–218.
B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell System Techn. J., No. 49, 291–307 (1970).
S. Kirkpatrik, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, 220, No. 4598, 671–680 (1983).
E. Aarts, J. Korst, and W. Michiels, “Simulated annealing,” in: T. F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, Boca Raton (FL) (2007), pp. 387–397.
L. F. Hulianytskyi, “Using algorithms of fast probabilistic modeling to solve combinatorial optimization problems,” in: Computational Mathematics [in Russian], V. M. Glushkov Inst. of Cybernetics NASU, No. 1, 64–72 (2004).
H. R. Lourenço, O. Martin, and T. Stützle, “Iterated local search,” in: F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics, Kluwer Acad. Publ., Norwell (MA) (2002), pp. 321–353.
F. Glover, “Future paths for integer programming and links to artificial intelligence,” Comput. Oper. Res., No. 5, 533–549 (1986).
F. Glover and M. Laguna, Tabu Search, Kluwer Acad. Publ., Norwell (MA) (1997).
A. Das and B. K. Chakrabarti (eds.), Quantum Annealing and Related Optimization Methods, Lect. Notes Physics, 679, Springer, Heidelberg (2005).
T. A. Feo and M. G. C. Resende, “A probabilistic heuristic for a computationally difficult set covering problem,” Oper. Res. Letters, 8, No. 2, 67–71 (1989).
L. Pitsoulis and M. G. C. Resende, “Greedy randomized adaptive search procedures,” in: P.M. Pardalos and M. G. C. Resende (eds.), Handbook of Applied Optimization, Oxford Univ. Press, Oxford (2002), pp. 168–181.
Yu. G. Stoyan and S. V. Yakovlev, Mathematical Models and Optimization Methods of Geometric Design [in Russian], Naukova Dumka, Kyiv (1986).
J. H. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan Press, Ann Arbor (MI) (1975).
P. Moscato, “On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms,” Techn. Rep., N C3P 826, California Inst. of Technology, Pasadena (CA) (1989).
P. Moscato and C. Cotta, “Memetic algorithms,” in: T. F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, Boca Raton (FL) (2007), pp. 412–423.
V. Cutello and G. Nicosia, “An immunological approach to combinatorial optimization problems,” in: Lect. Notes Comput. Sci., No. 2527 (2002), pp. 361–370.
L. N. de Castro and J. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach, Springer, London (2002).
F. Glover, M. Laguna, and R. Marti’,“Scatter search and path relinking: foundations and advanced designs,” in: G. Onwubolu and B. V. Babu (eds.), New Optimization Techniques in Engineering, Springer-Verlag, Berlin (2004), pp. 87–100.
H. Mühlenbein and G. Paab, “From recombination of genes to the estimation of distributions. I. Binary parameters,” in: Lect. Notes Comput. Sci.: Parallel Problem Solving from Nature, No. 4 (1996), pp. 178–187.
P. Larrañnaga and J. A. Lozano (eds.), Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, Kluwer Acad. Publ., Boston (MA) (2001).
M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete optimization,” Artif. Life, 5, No. 2, 137–172 (1999).
M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press, Cambridge (MA) (2004).
R. C. Eberhart and J. Kennedy, “Particle swarm optimization,” in: Proc. IEEE Intern. Conf. on Neural Networks, 4, IEEE Service Center, Piscataway (NJ) (1995), pp. 1942–1948.
M. Clerc, Particle Swarm Optimization, Wiley-Interscience, Hoboken (NJ) (2006).
D. Teodorovic, P. Lucic, G. Markovic, and M. D’Orco, “Bee colony optimization: principles and applications,” in: 8th Seminar on Neural Network Applications in Electrical Engineering, Belgrade, Serbia (2006), pp. 151–156.
K. De Meyer, S. J. Nasuto, and J. M. Bishop, “Stochastic diffusion search: partial function evaluation in swarm intelligence dynamic optimisation,” in: A. Abraham, C. Grosam, and V. Ramos (eds.), Stigmergic Optimization, Springer–Verlag, Berlin (2006), pp. 185–208.
L. F. Hulianytskyi, “Deformation method in discrete optimization,” Issled. Oper. ASU, No. 34, 30–33 (1989).
Yu. I. Zhuravlev, “Correct algebras over sets of incorrect (heuristic) algorithms,” Kibernetika, No. 4, 5–17 (1977).
D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu, “Rollout algorithms for combinatorial optimization,” J. Heuristics, No. 3, 245–262 (1997).
E. Burke, E. Hart, G. Kendall, et al., “Hyperheuristics: An emerging direction in modern search technology,” in: F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics, Kluwer Acad. Publ., Norwell (MA) (2003), pp. 457–474.
E. Ozcan, E. Bilgin, and E. E. Korkmaz, “A comprehensive analysis of hyper-heuristics,” Intelligent Data Analysis, 12, No. 1, 3–23 (2008).
L. F. Hulianytskyi, “A family of iterative discrete optimization algorithms,” in: Developing Mathematical and Engineering Tools in ACS [in Russian], IK AN USSR, Kyiv (1978), pp. 25–30.
F. Glover, “Ejection chains, reference structures and alternating path methods for traveling salesman problems,” Discrete Appl. Math., No. 65, 223–253 (1996).
P. Morris, “The breakout method for escaping from local minima,” in: Proc. 11th Conf. on Artif. Intelligence, MIT Press, Cambridge (MA) (1993), pp. 40–45.
R. Battiti and M. Brunato, “Reactive search: Machine learning for memory-based heuristics,” Techn. Rep., N DIT-05-058, Univ. di Trento, Trento (2005).
R. Battiti and R. Tecchiolli, “The reactive tabu search,” ORSA J. Computing, 6, No. 2, 126–140 (1994).
Y.-S. Ong, M.-H. Lim, N. Zhu, and K.-W. Wong, “Classification of adaptive memetic algorithms: A comparative study,” IEEE Trans. Systems, Man, and Cybernetics. Part B, Cybernetics, 36, No. 1, 141–152 (2006).
M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo, “Model-based search for combinatorial optimization: A critical survey,” Ann. Oper. Res., No. 131, 373–395 (2004).
R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation, and Machine Learning, Springer-Verlag, New York (2004).
L. F. Hulianytskyi, “Developing cooperative metaheuristics,” in: Abstr. Int. Conf. “Problems of Decision Making under Uncertainties (PDMU–2009)” (April 27-30, 2009, Skhidnytsia, Ukraine), Kyiv (2009), pp. 90–91.
E.-G. Talbi (ed.), Parallel Combinatorial Optimization, Wiley-Interscience, Hoboken (NJ) (2006).
E. Alba (ed.), Parallel Metaheuristics: A New Class of Algorithms, Wiley-Interscience, Hoboken (NJ) (2006).
C. Choi and J. Lee, “Chaotic local search algorithm,” Artif. Life Robotics, 2, No. 1, 41–47 (1998).
S. Boettcher, A. G. Percus, “Extremal optimization: Methods derived from co-evolution,” in: Proc. Genetic and Evolutionary Computation Conf. (GECCO) (1999), pp. 825–832.
C. Bourjot, V. Chevrier, and V. Thomas, “A new swarm mechanism based on social spiders colonies: from web weaving to region detection,” Web Intelligence and Agent Systems, 1, No. 1, 47–64 (2003).
H. Wakuya, “A new search method for combinatorial optimization problem inspired by the spin glass system,” Intern. Congress Series, No. 1291, 201–204 (2006).
P. Cortés, J. M. Garci’a, J. Muñnuzuri, and L. Onieva, “Viral systems: A new bio-inspired optimisation approach,” Comput. Oper. Res., No. 35, 2840–2860 (2008).
M. G. H. Omran and M. Mahdavi, “Global-best harmony search,” Appl. Math. Comput., No. 198, 643–656 (2008).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Kibernetika i Sistemnyi Analiz, No. 5, pp. 71–83, September–October 2009.
Rights and permissions
About this article
Cite this article
Sergienko, I.V., Hulianytskyi, L.F. & Sirenko, S.I. Classification of applied methods of combinatorial optimization. Cybern Syst Anal 45, 732–741 (2009). https://doi.org/10.1007/s10559-009-9134-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10559-009-9134-0