Abstract
Precise control of centrosome number is crucial for bipolar spindle assembly and accurate transmission of genetic material to daughter cells. Failure to properly control centrosome number results in supernumerary centrosomes, which are frequently found in cancer cells. This presents a paradox: during mitosis, cells with more than two centrosomes are prone to multipolar mitoses and cell death, however, cancer cells possessing extra centrosomes usually divide successfully. One mechanism frequently utilized by cancer cells to escape death caused by multipolar mitoses is the clustering of supernumerary centrosomes into bipolar arrays. An understanding of the molecular mechanisms by which cancer cells can suppress multipolar mitoses is beginning to emerge. Here, we review what’s currently known about centrosome clustering mechanisms and discuss potential strategies to target these mechanisms for the selective killing of cancer cells.
Similar content being viewed by others
References
Bettencourt-Dias, M., & Glover, D. M. (2007). Centrosome biogenesis and function: centrosomics brings new understanding. Nature Reviews. Molecular Cell Biology, 8, 451–463.
Bornens, M. (2002). Centrosome composition and microtubule anchoring mechanisms. Current Opinion in Cell Biology, 14, 25–34.
Basto, R., Lau, J., Vinogradova, T., Gardiol, A., Woods, C. G., Khodjakov, A., et al. (2006). Flies without centrioles. Cell, 125, 1375–1386.
Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L., Gatt, M. K., et al. (2005). SAK/PLK4 is required for centriole duplication and flagella development. Current Biology, 15, 2199–2207.
Bobinnec, Y., Khodjakov, A., Mir, L. M., Rieder, C. L., Edde, B., & Bornens, M. (1998). Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. The Journal of Cell Biology, 143, 1575–1589.
Dammermann, A., Muller-Reichert, T., Pelletier, L., Habermann, B., Desai, A., & Oegema, K. (2004). Centriole assembly requires both centriolar and pericentriolar material proteins. Developmental Cell, 7, 815–829.
Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S., & Hyman, A. A. (2003). SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell, 112, 575–587.
Strnad, P., & Gonczy, P. (2008). Mechanisms of procentriole formation. Trends in Cell Biology, 18, 389–396.
Tsou, M. F., & Stearns, T. (2006). Controlling centrosome number: licenses and blocks. Current Opinion in Cell Biology, 18, 74–78.
Loncarek, J., Hergert, P., Magidson, V., & Khodjakov, A. (2008). Control of daughter centriole formation by the pericentriolar material. Nature Cell Biology, 10, 322–328.
Dammermann, A., Maddox, P. S., Desai, A., & Oegema, K. (2008). SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules. The Journal of Cell Biology, 180, 771–785.
Kramer, A., Neben, K., & Ho, A. D. (2005). Centrosome aberrations in hematological malignancies. Cell Biology International, 29, 375–383.
Nigg, E. A. (2002). Centrosome aberrations: cause or consequence of cancer progression? Nature Reviews. Cancer, 2, 815–825.
Nigg, E. A. (2007). Centrosome duplication: of rules and licenses. Trends in Cell Biology, 17, 215–221.
Lingle, W. L., Lutz, W. H., Ingle, J. N., Maihle, N. J., & Salisbury, J. L. (1998). Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proceedings of the National Academy of Sciences of the United States of America, 95, 2950–2955.
Giehl, M., Fabarius, A., Frank, O., Hochhaus, A., Hafner, M., Hehlmann, R., et al. (2005). Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia, 19, 1192–1197.
Pihan, G. A., Purohit, A., Wallace, J., Knecht, H., Woda, B., Quesenberry, P., et al. (1998). Centrosome defects and genetic instability in malignant tumors. Cancer Research, 58, 3974–3985.
Duelli, D., & Lazebnik, Y. (2007). Cell-to-cell fusion as a link between viruses and cancer. Nature Reviews. Cancer, 7, 968–976.
Boveri, T. (1929). The origin of malignant tumors. Baltimore: Williams and Wilkins.
Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics & Development, 17, 157–162.
Guarguaglini, G., Duncan, P. I., Stierhof, Y. D., Holmstrom, T., Duensing, S., & Nigg, E. A. (2005). The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Molecular Biology of the Cell, 16, 1095–1107.
Heneen, W. K. (1970). In situ analysis of normal and abnormal patterns of the mitotic apparatus in cultured rat-kangaroo cells. Chromosoma, 29, 88–117.
Hansemann, D. (1890). Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin, 119, 299–326.
Boveri, T. (1902). Ueber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh Phys-med Ges Wurzburg NF, 35, 67–90.
D’Assoro, A. B., Barrett, S. L., Folk, C., Negron, V. C., Boeneman, K., Busby, R., et al. (2002). Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Research and Treatment, 75, 25–34.
Levine, D. S., Sanchez, C. A., Rabinovitch, P. S., & Reid, B. J. (1991). Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 88, 6427–6431.
Pihan, G. A., Wallace, J., Zhou, Y., & Doxsey, S. J. (2003). Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Research, 63, 1398–1404.
Fukasawa, K. (2007). Oncogenes and tumour suppressors take on centrosomes. Nature Reviews. Cancer, 7, 911–924.
Grisendi, S., Bernardi, R., Rossi, M., Cheng, K., Khandker, L., Manova, K., et al. (2005). Role of nucleophosmin in embryonic development and tumorigenesis. Nature, 437, 147–153.
Storchova, Z., & Pellman, D. (2004). From polyploidy to aneuploidy, genome instability and cancer. Nature Reviews. Molecular Cell Biology, 5, 45–54.
Marumoto, T., Zhang, D., & Saya, H. (2005). Aurora-A—a guardian of poles. Nature Reviews. Cancer, 5, 42–50.
Meraldi, P., Honda, R., & Nigg, E. A. (2002). Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO Journal, 21, 483–492.
Caldwell, C. M., Green, R. A., & Kaplan, K. B. (2007). APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. The Journal of Cell Biology, 178, 1109–1120.
Daniels, M. J., Wang, Y., Lee, M., & Venkitaraman, A. R. (2004). Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science, 306, 876–879.
Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T., & Pellman, D. (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 437, 1043–1047.
Roh, M., Franco, O. E., Hayward, S. W., van der Meer, R., & Abdulkadir, S. A. (2008). A role for polyploidy in the tumorigenicity of Pim-1-expressing human prostate and mammary epithelial cells. PLoS ONE,, 3, e2572.
Basto, R., Brunk, K., Vinadogrova, T., Peel, N., Franz, A., Khodjakov, A., et al. (2008). Centrosome amplification can initiate tumorigenesis in flies. Cell, 133, 1032–1042.
Habedanck, R., Stierhof, Y. D., Wilkinson, C. J., & Nigg, E. A. (2005). The Polo kinase Plk4 functions in centriole duplication. Nature Cell Biology, 7, 1140–1146.
Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Habedanck, R., Stierhof, Y. D., & Nigg, E. A. (2007). Plk4-induced centriole biogenesis in human cells. Developmental Cell, 13, 190–202.
Castellanos, E., Dominguez, P., & Gonzalez, C. (2008). Centrosome dysfunction in drosophila neural stem cells causes tumors that are not due to genome instability. Current Biology, 18, 1209–1214.
Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.
Manandhar, G., Schatten, H., & Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biology of Reproduction, 72, 2–13.
Kim, D. Y., & Roy, R. (2006). Cell cycle regulators control centrosome elimination during oogenesis in Caenorhabditis elegans. The Journal of Cell Biology, 174, 751–757.
Graf, R., Euteneuer, U., Ho, T. H., & Rehberg, M. (2003). Regulated expression of the centrosomal protein DdCP224 affects microtubule dynamics and reveals mechanisms for the control of supernumerary centrosome number. Molecular Biology of the Cell, 14, 4067–4074.
Iwao, Y. (2000). Fertilization in amphibians. In J. J. Tarin & A. Cano (Eds.), Fertilization in protozoa and metazoa animals, cellular and molecular aspects (pp. 147–191). Heidelberg: Springfield.
Iwao, Y., Murakawa, T., Yamaguchi, J., & Yamashita, M. (2002). Localization of gamma-tubulin and cyclin B during early cleavage in physiologically polyspermic newt eggs. Development, Growth & Differentiation, 44, 489–499.
Iwao, Y., Yasumitsu, K., Narihira, M., Jiang, J., & Nagahama, Y. (1997). Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs. Molecular Reproduction and Development, 47, 210–221.
Ohta, K., Shiina, N., Okumura, E., Hisanaga, S., Kishimoto, T., Endo, S., et al. (1993). Microtubule nucleating activity of centrosomes in cell-free extracts from Xenopus eggs: involvement of phosphorylation and accumulation of pericentriolar material. Journal of Cell Science, 104(Pt 1), 125–137.
Chiba, S., Okuda, M., Mussman, J. G., & Fukasawa, K. (2000). Genomic convergence and suppression of centrosome hyperamplification in primary p53−/−cells in prolonged culture. Experimental Cell Research, 258, 310–321.
Brinkley, B. R. (2001). Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends in Cell Biology, 11, 18–21.
Ring, D., Hubble, R., & Kirschner, M. (1982). Mitosis in a cell with multiple centrioles. The Journal of Cell Biology, 94, 549–556.
Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.
Sharp, G. A., Osborn, M., & Weber, K. (1981). Ultrastructure of multiple microtubule initiation sites in mouse neuroblastoma cells. Journal of Cell Science, 47, 1–24.
Duensing, S. (2005). A tentative classification of centrosome abnormalities in cancer. Cell Biology International, 29, 352–359.
Brinkley, B. R., Cox, S. M., Pepper, D. A., Wible, L., Brenner, S. L., & Pardue, R. L. (1981). Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells. The Journal of Cell Biology, 90, 554–562.
Lingle, W. L., & Salisbury, J. L. (1999). Altered centrosome structure is associated with abnormal mitoses in human breast tumors. The American Journal of Pathology, 155, 1941–1951.
Fleisch, M. C., Maxwell, C. A., Kuper, C. K., Brown, E. T., Barcellos-Hoff, M. H., & Costes, S. V. (2006). Intensity-based signal separation algorithm for accurate quantification of clustered centrosomes in tissue sections. Microscopy Research and Technique, 69, 964–972.
Guidotti, J. E., Bregerie, O., Robert, A., Debey, P., Brechot, C., & Desdouets, C. (2003). Liver cell polyploidization: a pivotal role for binuclear hepatocytes. The Journal of Biological Chemistry, 278, 19095–19101.
Oberringer, M., Lothschutz, D., Jennewein, M., Koschnick, M., Mutschler, W., & Hanselmann, R. G. (1999). Centrosome multiplication accompanies a transient clustering of polyploid cells during tissue repair. Molecular Cell Biology Research Communications, 2, 190–196.
Sluder, G., & Nordberg, J. J. (2004). The good, the bad and the ugly: the practical consequences of centrosome amplification. Current Opinion in Cell Biology, 16, 49–54.
Fukasawa, K. (2005). Centrosome amplification, chromosome instability and cancer development. Cancer Letter, 230, 6–19.
Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews. Molecular Cell Biology, 8, 379–393.
Lambert, R. (1913). Comparative studies upon cancer cells and normal cells. The Journal of Experimental Medicine, 17, 499–510.
Lewis, M. R., & Lewis, W. H. (1932). The malignant cells of Walker rat sarcoma. American Journal of Cancer, 16, 1153–1183.
Therman, E., & Kuhn, E. M. (1989). Mitotic modifications and aberrations in cancer. Critical Reviews in Oncogenesis, 1, 293–305.
Sisken, J. E., Bonner, S. V., & Grasch, S. D. (1982). The prolongation of mitotic stages in SV40-transformed vs nontransformed human fibroblast cells. Journal of Cellular Physiology, 113, 219–223.
Yang, Z., Loncarek, J., Khodjakov, A., & Rieder, C. L. (2008). Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nature Cell Biology, 10, 748–751.
Sluder, G., Thompson, E. A., Miller, F. J., Hayes, J., & Rieder, C. L. (1997). The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. Journal of Cell Science, 110(Pt 4), 421–429.
Buffin, E., Emre, D., & Karess, R. E. (2007). Flies without a spindle checkpoint. Nature Cell Biology, 9, 565–572.
Duensing, S., Lee, B. H., Dal Cin, P., & Munger, K. (2003). Excessive centrosome abnormalities without ongoing numerical chromosome instability in a Burkitt’s lymphoma. Molecular Cancer, 2, 30.
Goshima, G., Nedelec, F., & Vale, R. D. (2005). Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. The Journal of Cell Biology, 171, 229–240.
Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M., & Saunders, W. S. (2005). Spindle multipolarity is prevented by centrosomal clustering. Science, 307, 127–129.
Merdes, A., Ramyar, K., Vechio, J. D., & Cleveland, D. W. (1996). A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell, 87, 447–458.
Endow, S. A., & Komma, D. J. (1998). Assembly and dynamics of an anastral:astral spindle: the meiosis II spindle of Drosophila oocytes. Journal of Cell Science, 111(Pt 17), 2487–2495.
Morales-Mulia, S., & Scholey, J. M. (2005). Spindle pole organization in Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and KLP10A. Molecular Biology of the Cell, 16, 3176–3186.
Mountain, V., Simerly, C., Howard, L., Ando, A., Schatten, G., & Compton, D. A. (1999). The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. The Journal of Cell Biology, 147, 351–366.
Karsenti, E., & Vernos, I. (2001). The mitotic spindle: a self-made machine. Science, 294, 543–547.
Rosenblatt, J., Cramer, L. P., Baum, B., & McGee, K. M. (2004). Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell, 117, 361–372.
Carreno, S., Kouranti, I., Glusman, E. S., Fuller, M. T., Echard, A., & Payre, F. (2008). Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. The Journal of Cell Biology, 180, 739–746.
Kunda, P., Pelling, A. E., Liu, T., & Baum, B. (2008). Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Current Biology, 18, 91–101.
Bretscher, A., Edwards, K., & Fehon, R. G. (2002). ERM proteins and merlin: integrators at the cell cortex. Nature Reviews. Molecular Cell Biology, 3, 586–599.
Thery, M., Racine, V., Pepin, A., Piel, M., Chen, Y., Sibarita, J. B., et al. (2005). The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biology, 7, 947–953.
Pearson, C. G., & Bloom, K. (2004). Dynamic microtubules lead the way for spindle positioning. Nature Reviews. Molecular Cell Biology, 5, 481–492.
Gundersen, G. G., Gomes, E. R., & Wen, Y. (2004). Cortical control of microtubule stability and polarization. Current Opinion in Cell Biology, 16, 106–112.
Nguyen-Ngoc, T., Afshar, K., & Gonczy, P. (2007). Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. Nature Cell Biology, 9, 1294–1302.
Toyoshima, F., & Nishida, E. (2007). Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO Journal, 26, 1487–1498.
Toyoshima, F., Matsumura, S., Morimoto, H., Mitsushima, M., & Nishida, E. (2007). PtdIns(3,4,5)P3 regulates spindle orientation in adherent cells. Developmental Cell, 13, 796–811.
Kim, H., Ling, S. C., Rogers, G. C., Kural, C., Selvin, P. R., Rogers, S. L., et al. (2007). Microtubule binding by dynactin is required for microtubule organization but not cargo transport. The Journal of Cell Biology, 176, 641–651.
Woolner, S., O’Brien, L. L., Wiese, C., & Bement, W. M. (2008). Myosin-10 and actin filaments are essential for mitotic spindle function. The Journal of Cell Biology, 182, 77–88.
Mitchison, T. J., Maddox, P., Gaetz, J., Groen, A., Shirasu, M., Desai, A., et al. (2005). Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Molecular Biology of the Cell, 16, 3064–3076.
Wang, W., Chen, L., Ding, Y., Jin, J., & Liao, K. (2008). Centrosome separation driven by actin-microfilaments during mitosis is mediated by centrosome-associated tyrosine-phosphorylated cortactin. Journal of Cell Science, 121, 1334–1343.
Gonczy, P. (2008). Mechanisms of asymmetric cell division: flies and worms pave the way. Nature Reviews. Molecular Cell Biology, 9, 355–366.
Mitchison, T. J. (1992). Actin based motility on retraction fibers in mitotic PtK2 cells. Cell Motility and the Cytoskeleton, 22, 135–151.
Grill, S. W., Gonczy, P., Stelzer, E. H., & Hyman, A. A. (2001). Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature, 409, 630–633.
Thery, M., Jimenez-Dalmaroni, A., Racine, V., Bornens, M., & Julicher, F. (2007). Experimental and theoretical study of mitotic spindle orientation. Nature, 447, 493–496.
Pugacheva, E. N., & Golemis, E. A. (2005). The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nature Cell Biology, 7, 937–946.
Zhao, Z. S., Lim, J. P., Ng, Y. W., Lim, L., & Manser, E. (2005). The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Molecular Cell, 20, 237–249.
Fielding, A. B., Dobreva, I., McDonald, P. C., Foster, L. J., & Dedhar, S. (2008). Integrin-linked kinase localizes to the centrosome and regulates mitotic spindle organization. The Journal of Cell Biology, 180, 681–689.
Huang, P., Senga, T., & Hamaguchi, M. (2007). A novel role of phospho-beta-catenin in microtubule regrowth at centrosome. Oncogene, 26, 4357–4371.
Kalous, J., Solc, P., Baran, V., Kubelka, M., Schultz, R. M., & Motlik, J. (2006). PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biology of the Cell, 98, 111–123.
Wakefield, J. G., Stephens, D. J., & Tavare, J. M. (2003). A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome alignment. Journal of Cell Science, 116, 637–646.
Reverte, C. G., Benware, A., Jones, C. W., & LaFlamme, S. E. (2006). Perturbing integrin function inhibits microtubule growth from centrosomes, spindle assembly, and cytokinesis. The Journal of Cell Biology, 174, 491–497.
Raz, A., & Ben-Ze’ev, A. (1983). Modulation of the metastatic capability in B16 melanoma by cell shape. Science, 221, 1307–1310.
Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. (1997). Geometric control of cell life and death. Science, 276, 1425–1428.
Akiri, G., Sabo, E., Dafni, H., Vadasz, Z., Kartvelishvily, Y., Gan, N., et al. (2003). Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Research, 63, 1657–1666.
Khaled, W., Reichling, S., Bruhns, O. T., Boese, H., Baumann, M., Monkman, G., et al. (2004). Palpation imaging using a haptic system for virtual reality applications in medicine. Studies in Health Technology and Informatics, 98, 147–153.
Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8, 241–254.
Nigro, J. M., Aldape, K. D., Hess, S. M., & Tlsty, T. D. (1997). Cellular adhesion regulates p53 protein levels in primary human keratinocytes. Cancer Research, 57, 3635–3639.
Tlsty, T. D. (1998). Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Current Opinion in Cell Biology, 10, 647–653.
Cuomo, M. E., Knebel, A., Morrice, N., Paterson, H., Cohen, P., & Mittnacht, S. (2008). p53-Driven apoptosis limits centrosome amplification and genomic instability downstream of NPM1 phosphorylation. Nature Cell Biology, 10, 723–730.
Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.
Hussain, S. P., Hofseth, L. J., & Harris, C. C. (2003). Radical causes of cancer. Nature Reviews. Cancer, 3, 276–285.
Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98, 137–146.
Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews. Cancer, 4, 253–265.
McGuire, W. P., Rowinsky, E. K., Rosenshein, N. B., Grumbine, F. C., Ettinger, D. S., Armstrong, D. K., et al. (1989). Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Annals of Internal Medicine, 111, 273–279.
Rowinsky, E. K., Chaudhry, V., Cornblath, D. R., & Donehower, R. C. (1993). Neurotoxicity of Taxol. J Natl Cancer Inst Monographs, 107–115.
Jackson, J. R., Patrick, D. R., Dar, M. M., & Huang, P. S. (2007). Targeted anti-mitotic therapies: can we improve on tubulin agents? Nature Reviews. Cancer, 7, 107–117.
Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.
Blangy, A., Lane, H. A., d’Herin, P., Harper, M., Kress, M., & Nigg, E. A. (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 83, 1159–1169.
Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., & Mitchison, T. J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 286, 971–974.
Bergnes, G., Brejc, K., & Belmont, L. (2005). Mitotic kinesins: prospects for antimitotic drug discovery. Current Topics in Med Chem, 5, 127–145.
Lee, C. W., Belanger, K., Rao, S. C., Petrella, T. M., Tozer, R. G., Wood, L., et al. (2008). A phase II study of ispinesib (SB-715992) in patients with metastatic or recurrent malignant melanoma: a National Cancer Institute of Canada Clinical Trials Group trial. Investigational New Drugs, 26, 249–255.
Tang, P. A., Siu, L. L., Chen, E. X., Hotte, S. J., Chia, S., Schwarz, J. K., et al. (2008). Phase II study of ispinesib in recurrent or metastatic squamous cell carcinoma of the head and neck. Investigational New Drugs, 26, 257–264.
Keen, N., & Taylor, S. (2004). Aurora-kinase inhibitors as anticancer agents. Nature Reviews. Cancer, 4, 927–936.
Strebhardt, K., & Ullrich, A. (2006). Targeting polo-like kinase 1 for cancer therapy. Nature Reviews. Cancer, 6, 321–330.
Amendola, R., Martinez, R., Negroni, A., Venturelli, D., Tanno, B., Calabretta, B., et al. (2001). DR-nm23 expression affects neuroblastoma cell differentiation, integrin expression, and adhesion characteristics. Medical and Pediatric Oncology, 36, 93–96.
Ward, S., Sotsios, Y., Dowden, J., Bruce, I., & Finan, P. (2003). Therapeutic potential of phosphoinositide 3-kinase inhibitors. Chemistry & Biology, 10, 207–213.
Li, H., Gou, F., Rubinstein, B., & Li, R. (2008). Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes. Nature Cell Biology, 10, 1301–1308.
Schuh, M., & Ellenberg J. (2008). A new model for asymmetric spindle positioning in mouse oocytes. Current Biology, 18, 1986–1992.
Acknowledgements
We apologize to the authors whose work was not discussed or cited owing to space constraints. We are grateful to N. Ganem, S. Buttery, K. Crasta, N. Chandhok and M. Thery for critical reading of the manuscript. Our work is supported by a Fundação para a Ciência e Tecnologia grant to S. Godinho, by a Susan Komen postdoctoral fellowship to M. Kwon, and by NIH grant GM083299 to D. Pellman. D.P. is an Investigator of Howard Hughes Medical Institute.
Author information
Authors and Affiliations
Corresponding author
Additional information
Godinho and Kwon contributed equally to the work.
Rights and permissions
About this article
Cite this article
Godinho, S.A., Kwon, M. & Pellman, D. Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 28, 85–98 (2009). https://doi.org/10.1007/s10555-008-9163-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10555-008-9163-6