Nothing Special   »   [go: up one dir, main page]

biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 61:201-209, 2017 | DOI: 10.1007/s10535-016-0700-9

Molecular responses to drought stress in plants

G. Kaur1, B. Asthir1,*
1 Department of Biochemistry, Punjab Agricultural University, Ludhiana, India

Drought is a severe environmental constraint to plant productivity. Being a multidimensional stress, it triggers a wide variety of plant responses ranging from physiological, biochemical to molecular levels. One of the inevitable consequences of drought stress is an increase in reactive oxygen species (ROS) production in different cellular compartments, namely the chloroplasts and mitochondria. This enhanced ROS production is, however, kept under tight control by a versatile and cooperative antioxidant system that modulates intracellular ROS content and sets the redoxstatus of the cell. Furthermore, ROS production under stresses functions as an alarm signal that triggers defence or acclimation. Specific signal transduction pathways involve, e.g., H2O2 as a secondary messenger. ROS signalling under drought is linked to abscisic acid (ABA) and Ca2+ fluxes. At molecular levels, several drought-responsive genes, transcription factors, aquaporins, late embryogenesis abundant proteins, heat shock proteins, and dehydrins have been identified. This review discusses recent understanding on molecular responses and protective mechanisms of drought stress.

Keywords: abscisic acid; aquaporins; calcium; dehydrins; late embryogenesis abundant proteins; reactive oxygen species
Subjects: drought stress; abscisic acid; aquaporins; calcium; dehydrins; late embryogenesis abundant; reactive oxygen species; antioxidants; signalling pathways

Received: February 29, 2016; Revised: July 20, 2016; Accepted: August 1, 2016; Published: June 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kaur, G., & Asthir, B. (2017). Molecular responses to drought stress in plants. Biologia plantarum61(2), 201-209. doi: 10.1007/s10535-016-0700-9
Download citation

References

  1. Afzal, Z., Howton, T.C., Sun, Y., Mukhtar, M.S.: The roles of aquaporins in plant stress responses. - J. Dev. Biol. 9: 1-22, 2016. Go to original source...
  2. Akram, M.: Growth and yield components of wheat under water stress of different growth stages. - Bangladesh J. agr. Res. 36: 455-468, 2011. Go to original source...
  3. Akram, N.A., Waseem, M., Ameen, R., Ashraf, M.: Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. - Acta Physiol. Plant. 38: 1-10, 2016. Go to original source...
  4. Andrésa, Z., Pérez-Hormaechea, J., Leidia, E.O., Schlücking, K., Leonie, S., McLachlanc, D.H., Schumacher, K., Hetherington, A.M., Kudlab, J., Cuberoa, B., Pardo, J.M.: Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. - Proc. nat. Acad. Sci. USA 111: 1806-1814, 2014. Go to original source...
  5. Anithakumari, A.M., Nataraja, K.N., Visser, R.G., Linden, V.C.G.: Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. - Mol. Breed. 30: 1413-1429, 2012. Go to original source...
  6. Anjum, S.A., Xie, X., Wang, L.: Morphological, physiological and biochemical responses of plants to drought stress. - Afr. J. agr. Res. 6: 2026-2032, 2011.
  7. Ashraf, M., Harris, P.J.C.: Photosynthesis under stressful environments: an overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  8. Avramova, V., Elgawad, H.A, Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., Knapen, D., Taleisnik, E., Guisez, Y., Asard, H., Beemster G T.S.: Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. - Plant Physiol. 169: 1382-1396, 2015. Go to original source...
  9. Batra, N.G., Sharma, V., Kumari, N.: Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. - J. Plant Interact. 9: 712-721, 2014. Go to original source...
  10. Brestič, M., Živčák, M.: PS II fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. - In: Rout, G.R., Das, A.B. (ed.): Molecular Stress Physiology of Plants. Pp. 87-131, Springer, New Delhi 2013. Go to original source...
  11. Budak, H., Hussain, B., Khan, Z., Ozturk, N.Z., Ullah, N.: From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. - Front. Plant Sci. 6: 1012, 2015. Go to original source...
  12. Carmo-Silva, A.E., Gore, M.A., Andrade-Sanchez, P., French, A.N., Hunsaker, D.J., Salvucci, M.E.: Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. - Environ. Exp. Bot. 83: 1-11, 2012. Go to original source...
  13. Chakraborty, U., Pradhan, B.: Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. - Braz. J. Plant Physiol. 24: 117-130, 2012. Go to original source...
  14. Chugh, V., Kaur, N., Gupta, A.: Evolution of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. - Indian J. Biochem. Biophys. 48: 47-53, 2011.
  15. Demirevska, K., Zasheva, D., Dimitrov, R., Simova-Stoilova, L., Stamenova, M., Feller, U.: Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. - Acta Physiol. Plant. 31: 1129-1138, 2009. Go to original source...
  16. Driever, S.M., Baker, N.R.: The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. - Plant Cell Environ. 34: 837-846, 2011. Go to original source...
  17. Estrada-Melo, A.C., Ma, C., Reid, M. S., Jiang, Z.: Overexpression of an ABA biosynthesis gene using a stressinducible promoter enhances drought resistance in petunia. - Hort. Res. 2: 11-13, 2015. Go to original source...
  18. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A.: Plant drought stress: effects, mechanisms and management. - Agron. Sustain. Dev. 29: 185-212, 2009. Go to original source...
  19. Fischer, B.B., Hideg, E., Krieger-Liszkay, A.: Production, detection, and signaling of singlet oxygen in photosynthetic organisms. - Antioxid. Redox Signal. 18: 2145-2162, 2013. Go to original source...
  20. Fujii, H., Zhu, J.K: Osmotic stress signaling via protein kinases. - Cell Mol. Life Sci. 69: 3165-3173, 2012. Go to original source...
  21. Gill, S.S., Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Biochem. 48: 909-930, 2010. Go to original source...
  22. Giri, J.: Glycinebetaine and abiotic stress tolerance in plants. - Plant Signal. Behav. 6: 1746-1751, 2011. Go to original source...
  23. Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.S.: Cytokinins: metabolism and function in plant adaptation to environmental stresses. - Trends Plant Sci. 17: 172-179, 2012. Go to original source...
  24. Harba, A., Awada, D., Samarahb, N.: Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. - J. Plant Interact. 10: 109-116, 2015. Go to original source...
  25. Hayes, M., Svoboda, M., Wall, N., Widhalm, M.: The Lincoln declaration on drought indices: universal meteorological drought index recommended. - Bull. amer. meteorol. Soc. 92: 485-488, 2010. Go to original source...
  26. Hu, Y., Wang, B., Hu, T., Chen, H., Li, H., Zhang, W., Zhong, Y., Hu, H.: Combined action of an antioxidant defence system and osmolytes on drought tolerance and post-drought recovery of Phoebe zhennan S. Lee saplings. - Acta Physiol. Plant. 37: 1-13, 2015. Go to original source...
  27. Ings, J., Mur, L.A., Robson, R.H., Bosch, M.: Physiological and growth responses to water deficit in the bioenergy crop Miscanthus × giganteus. - Front. Plant Sci. 4: 468, 2013. Go to original source...
  28. Iordachescu, M., Imai, R.: Trehalose biosynthesis in response to abiotic stresses. - J. Integ. Plant Biol. 50: 1223-1229, 2008. Go to original source...
  29. Jaleel, C.A., Gopi, R., Sankar, B., Gomathinayagam, M., Panneerselvam, R.: Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. - Comp. Rend. Biol. 331: 42-47, 2008. Go to original source...
  30. Joliot, P., Johnson, G.N.: Regulation of cyclic and linear electron flow in higher plants. - Proc. nat. Acad. Sci. USA 108: 13317-13322, 2011. Go to original source...
  31. Kaewsuksaeng, S.: Chlorophyll degradation in horticultural crops. - Walailak J. Sci. Technol. 8: 9-19, 2011.
  32. Kannan, N.D., Kulandaivelu, G.: Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. - J. med. Plants Res. 5: 3929-3935, 2011.
  33. Kar, R.K.: Plant responses to water stress: role of reactive oxygen species. - Plant Signal. Behav. 6: 1741-1745, 2011. Go to original source...
  34. Karami, A., Shahbazi, M., Niknam, V., Shobbar, Z.S., Tafreshi, R.S., Abedini, R.: Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. - Acta Physiol. Plant. 35: 2289-2297, 2013. Go to original source...
  35. Kaur, G., Asthir, B.: Proline: a key player in plant abiotic stress tolerance. - Biol. Plant. 59: 609-619, 2015. Go to original source...
  36. Khan, M.S., Ahmad, D., Khan, M.A.: Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. - Electron. J. Biotech. 18: 257-266, 2015. Go to original source...
  37. Kim, T.H.: Mechanism of ABA signal transduction: agricultural highlights for improving drought tolerance. - J. Plant Biol. 57: 1-8, 2014. Go to original source...
  38. Kondrák, M., Marincs, F., Antal, F., Juhász, Z., Bánfalvi, Z.: Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. - BMC Plant Biol. 12: 74, 2012. Go to original source...
  39. Krasensky, J., Jonak, C.: Drought, salt and temperature stressinduced metabolic rearrangements and regulatory networks. - J. Exp. Bot. 63: 1593-1608, 2012. Go to original source...
  40. Kulik, A., Wawer, I., Krzywińska, E., Bucholc, M., Dobrowolska, G.: SnRK2 protein kinases-key regulators of plant response to abiotic stresses. - OMICS 15: 859-872, 2011. Go to original source...
  41. Lata, C., Prasad, M.: Role of DREBs in regulation of abiotic stress responses in plants. - J. exp. Bot. 62: 4731-4748, 2011. Go to original source...
  42. Le Gall, H., Philippe, F., Domon, J.M., Françoise, G., Jérôme, P., Rayon, C.: Cell wall metabolism in response to abiotic stress. - Plants 4: 112-166, 2015. Go to original source...
  43. Li, H.W., Zang, B.S., Deng, X.W., Wang, X.P.: Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. - Planta 234: 1007-1018, 2011. Go to original source...
  44. Licausi, F., Ohme-Takagi, M., Perata, P.: APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. - New Phytol. 199: 639-649, 2013. Go to original source...
  45. Lim, J.H., Kim, S.D.: Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. - Plant Pathol. J. 29: 201-208, 2013. Go to original source...
  46. Liu, S., Lv, Y., Wan, X.R., Li, L.M., Hu, B.: Cloning and expression analysis of cDNAs encoding ABA 8'-hydroxylase in peanut plants in response to osmotic stress. - PLoS ONE 9: 97025, 2014. Go to original source...
  47. Manivannan, P., Jaleel, C.A., Sankar, B., Kishorekumar, A., Somasundaram, R., Alagu, L.G.M., Panneerselvam, R.: Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. - Colloids Surf. B: Biointerf. 59: 141-149, 2007. Go to original source...
  48. Marok, M., Tarrago, L., Ksas, B., Henri, P., Abrous-Belbachir, O., Havaux, M., Rey, P.: A drought-sensitive barley variety displays oxidative stress and strongly increased contents in low-molecular weight antioxidant compounds during water deficit compared to a tolerant variety. - J. Plant Physiol. 170: 633-645, 2013. Go to original source...
  49. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. - Plant Cell Environ. 33: 453-467, 2010. Go to original source...
  50. Mittler, R., Blumwald, E.: The roles of ROS and ABA in systemic acquired acclimation. - Plant Cell 27: 64-70, 2015. Go to original source...
  51. Mssacci, A., Nabiev, S.M., Pietrosanti, L., Nematov, S.K., Chernikova, T.N., Thor, K., Leipner, J.: Response of photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. - Plant Physiol. Biochem. 46: 189-195, 2008. Go to original source...
  52. Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K.: The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. - Front. Plant Sci. 5: 1-7, 2014. Go to original source...
  53. Nelson, G.C.D.: Mensbrugghe, V., Ahammad, H. Agriculture and climate change in global scenarios: why don't the models agree. - Agr. Econ. 45: 85-101, 2014. Go to original source...
  54. Nezhadahmadi, A., Prodhan, Z., Faruq, G.: Drought tolerance in wheat. - Sci. World J. 13: 1-12, 2013. Go to original source...
  55. Ng, L.M., Melcher, K., Teh, B.T., Xu, H.E.: Abscisic acid perception and signaling: structural mechanisms and applications. - Acta pharmacol. sin. 35: 567-584, 2014. Go to original source...
  56. Nguyen, T.X., Sticklen, M.: Barley HVA1 gene confers drought and salt tolerance in transgenic maize (Zea mays L.). - Adv. Crop Sci. Technol. 1: 1-11, 2013. Go to original source...
  57. Nishiyama, R., Watanabe, Y., Leyva-Gonzalez, M. A., Van Ha, C., Fujita, Y., Tanaka, M.: Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. - Proc. nat. Acad. Sci. USA 110: 4840-4845, 2013. Go to original source...
  58. Nuccio, M.L, Wu, J., Mowers, R., Zhou, H.P., Meghji, M., Primavesi, L.F., Paul, M.J., Chen, X., Gao, Y., Haque, E., Basu, S.S., Lagrimini, L.M: Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in wellwatered and drought conditions. - Natur. Biotechnol. 33: 862-869, 2015. Go to original source...
  59. Obidiegwu, J.E., Bryan, G.J., Jones, H.G., Prashar, A.: Coping with drought: stress and adaptive responses in potato and perspectives for improvement. - Front. Plant Sci. 6: 542, 2015. Go to original source...
  60. Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, LP.: Response of plants to water stress. - Plant Physiol. 5: 1-8, 2014. Go to original source...
  61. Phuong, N.D., Tuteja, N., Nghia, P.T., Hoi, P.X.: Identification and characterization of a stress-inducible gene OsNLI-IF enhancing drought tolerance in transgenic tobacco. - Curr. Sci. 109: 541-551, 2015.
  62. Potopová, V., Boroneant, C., Boincean, B., Soukup, J.: Impact of agricultural drought on main crop yields in the Republic of Moldova. - Int. J. Climatol. 36: 2063-2082, 2016. Go to original source...
  63. Praba, M.L., Cairns, J.E., Babu, R.C., Lafitte, H.R: Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. - J. Agron. Crop Sci. 195: 30-46, 2009. Go to original source...
  64. Prasad, P.V.V., Pisipati, S.R., Momčilović, I., Ristic, Z.: Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. - J. Agron. Crop Sci. 197: 430-441, 2011. Go to original source...
  65. Queval, G., Neukermans, J., Vanderauwera, S., Van Breusegem, F., Noctor, G.: Day length is a key regulator of transcriptomic responses to both CO2 and H2O2 in Arabidopsis. - Plant Cell Environ. 35: 374-387, 2012. Go to original source...
  66. Rollins, J.A., Habte, E., Templer, S.E., Colby, T., Schmidt, J., Von Korff, M.: Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). - J. exp. Bot. 64: 3201-3212, 2013. Go to original source...
  67. Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., Xin, Z., Zhang, Z.: The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. - Plant Biotechnol. J. 12: 468-79, 2014. Go to original source...
  68. Shatil-Cohen, A., Attia, Z., Moshelion, M.: Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? - Plant J. 67: 72-80, 2011. Go to original source...
  69. Siddiqui, M.H., Al-Khaishany, M.Y., Qutami, M.A.A., Whaibi, M.H.A, Grover, A., Ali, H.M., Wahibi, M.S.A.: Morphological and physiological characterization of different genotypes of faba bean under heat stress. - Saudi J. Biol. Sci. 22: 656-66, 2015. Go to original source...
  70. Singh, D., Laxmi, A.: Transcriptional regulation of drought response: a tortuous network of transcriptional factors. - Front. Plant Sci. 6: 895, 2015. Go to original source...
  71. Škodáček, Z., Prášil, I.T.: New possibilities for research of barley (Hordeum vulgare L.) drought resistance. - Úroda 8: 24-29, 2011.
  72. Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E., Mittler, R.: Abiotic and biotic stress combinations. - New Phytol. 203: 32-43, 2014. Go to original source...
  73. Szabados, L., Savouré, A.: Proline: a multifunctional amino acid. - Trends Plant Sci. 15: 1360-85, 2009. Go to original source...
  74. Todaka, D., Shinozaki, K., Yamaguchi-Shinozaki, K.: Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. - Front. Plant Sci. 6: 1-20, 2015. Go to original source...
  75. Veeranagamallaiah, G., Prasanthi, J., Reddy, K.E., Pandurangaiah, M., Babu, O.S., Sudhakar, C.: Group 1 and 2 LEA protein expression correlates with a decrease in water stress induced protein aggregation in horsegram during germination and seedling growth. - J. Plant Physiol. 168: 671-677, 2011. Go to original source...
  76. Verbruggen, N., Hermans, C.: Proline accumulation in plants: a review. - Amino Acids 35: 753-759, 2008. Go to original source...
  77. Verslues, P.E., Sharma, S.: Proline metabolism and its implications for plant-environment interaction. - Arabidopsis Book 8: 140, 2010. Go to original source...
  78. Vurukonda, S.S., Vardharajula, S., Shrivastava, M., Skz, A.: Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. - Microbiol. Res. 184: 13-24, 2016. Go to original source...
  79. Wang, M., Li, P., Li, C., Pan, Y., Jiang, X., Zhu, D., Zhao, Q., Yu, J.J.: SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. - BMC Plant Biol. 14: 290, 2014. Go to original source...
  80. Xu, K., Chen S., Li, T., Ma, X., Liang, X., Ding, X., Liu, H., Luo, L.: OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. - BMC Plant Biol. 15: 141, 2015. Go to original source...
  81. Xu, L., Han, L., Huang, B.: Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. - J. amer. Soc. hort. Sci. 136: 247-255, 2011. Go to original source...
  82. Yang, Y.Z, Tan, B.C.: A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis. - PLoS ONE 9: 87283, 2014. Go to original source...
  83. Zandkarimi, H., Ebadi, A., Salami, S.A, Alizade, H., Baisakh, N.: Analyzing the Expression Profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in grape (Vitis vinifera L.). - PLoS ONE 10: 134288, 2015. Go to original source...
  84. Zhou, Y., Lam, H.M., Zhang, J.: Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. - J. exp. Bot. 58: 1207-1217, 2007. Go to original source...
  85. Zlatev, Z., Lidon, F.C.: An overview on drought induced changes in plant growth, water relations and photosynthesis. - Emir. J. Food Agr. 24: 57-72, 2012. Go to original source...