Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Incorporating scene priors to dense monocular mapping

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a dense monocular mapping algorithm that improves the accuracy of the state-of-the-art variational and multiview stereo methods by incorporating scene priors into its formulation. Most of the improvement of our proposal is in low-textured image regions and for low-parallax camera motions; two typical failure cases of multiview mapping. The specific priors we model are the planarity of homogeneous color regions, the repeating geometric primitives of the scene—that can be learned from data—and the Manhattan structure of indoor rooms. We evaluate the performance of our method in our own sequences and in the publicly available NYU dataset, emphasizing its strengths and weaknesses in different cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Angeli, A., Handa, A., Newcombe, R., & Davison, A. (2011). Applications of Legendre-Fenchel transformation to computer vision problems. In Technical report DTR11-7. London: Imperial College.

  • Bao, S. Y., & Savarese, S. (2011). Semantic structure from motion. In 2011 IEEE conference on computer vision and pattern recognition (CVPR), IEEE (pp. 2025–2032).

  • Bao, Y., Chandraker, M., Lin, Y., & Savarese S. (2013). Dense object reconstruction with semantic priors. In 26th IEEE conference on computer vision and pattern recognition (CVPR).

  • Concha, A., & Civera, J. (2014, June). Using superpixels in monocular SLAM. In IEEE international conference on robotics and automation, Hong Kong.

  • Concha, A., & Civera, J. (2015a). DPPTAM: Dense piecewise planar tracking and mapping from a monocular sequence. In IEEE/RSJ international conference on intelligent robots and systems, Hamburg, Germany.

  • Concha, A., & Civera, J. (2015b). An evaluation of robust cost functions for RGB direct mapping . In European conference on mobile robotics (ECMR15), Lincoln, UK.

  • Concha, A., Hussain, W., Montano, L., & Civera, J. (2014). Manhattan and piecewise-planar constraints for dense monocular mapping. In Robotics: Science and systems.

  • Dame, A., Prisacariu, V. A., Ren, C. Y., & Reid, I., (2013). Dense reconstruction using 3D object shape priors. In 2013 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1288–1295).

  • Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067.

    Article  Google Scholar 

  • Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction from a single image using a multi-scale deep network. In Advances in neural information processing systems (pp. 2366–2374).

  • Engel, J., Schöps, T., & Cremers, D. (2014). LSD-SLAM: Large-scale direct monocular slam. In Computer vision—ECCV 2014, Springer (pp. 834–849).

  • Felzenszwalb, Pedro F., & Huttenlocher, Daniel P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181.

    Article  Google Scholar 

  • Flint, A., Murray, D., & Reid, I. (2011). Manhattan scene understanding using monocular, stereo, and 3D features. In 2011 IEEE international conference on computer vision (ICCV) (pp. 2228–2235).

  • Fouhey, D. F., Gupta, A., & Hebert, M. (2013). Data-driven 3D primitives for single image understanding. In ICCV.

  • Furukawa, Y., Curless, B., Seitz, S. M., & Szeliski, R. (2009). Reconstructing building interiors from images. In Proceedings of the international conference on computer vision (pp. 80–87).

  • Furukawa, Y., & Ponce, J. (2010). Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1362–1376.

    Article  Google Scholar 

  • Gallup, D., Frahm, J.-M., & Pollefeys, M. (2010). Piecewise planar and non-planar stereo for urban scene reconstruction. In 2010 IEEE conference on computer vision and pattern recognition (CVPR), IEEE (pp. 1418–1425).

  • Graber, G., Pock, T., & Bischof, H. (2011). Online 3d reconstruction using convex optimization. In 2011 IEEE international conference on computer vision workshops (pp. 708–711).

  • Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision. Cambridge: Cambridge University Press. ISBN 0521540518.

  • Hedau, V., Hoiem, D., & Forsyth, D. (2009). Recovering the spatial layout of cluttered rooms. In 2009 IEEE 12th international conference on computer vision, IEEE (pp. 1849–1856).

  • Hoiem, D., Efros, A. A., & Hebert, M. (2007). Recovering surface layout from an image. International Journal of Computer Vision, 75(1), 151–172.

    Article  Google Scholar 

  • Hoiem, D., Efros, A. A., & Hebert, M. (2005). Automatic photo pop-up. In ACM transactions on graphics (TOG), ACM (Vol. 24, pp. 577–584).

  • Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In Sixth IEEE and ACM international symposium on mixed and augmented reality.

  • Košecká, J., & Zhang, W. (2006). Video compass. In Computer vision—ECCV 2002, Springer (pp. 476–490).

  • Mičušík, Branislav, & Košecká, Jana. (2010). Multi-view superpixel stereo in urban environments. International Journal of Computer Vision, 89(1), 106–119.

    Article  Google Scholar 

  • Nabbe, B., Hoiem, D., Efros, A. A., & Hebert, M. (2006). Opportunistic use of vision to push back the path-planning horizon. In 2006 IEEE/RSJ international conference on intelligent robots and systems, IEEE (pp. 2388–2393).

  • Newcombe, R. A., Lovegrove, S. J., & Davison, A. J. (2011). DTAM: Dense tracking and mapping in real-time. In 2011 IEEE international conference on computer vision (ICCV) (pp. 2320–2327).

  • Owens, A., Xiao, J., Torralba, A., & Freeman, W. (2013, December). Shape anchors for data-driven multi-view reconstruction. In 2013 IEEE international conference on computer vision (ICCV), Sydney, Australia.

  • Piniés, P., Paz, L. M., & Newman, P. (2015). Dense mono reconstruction: Living with the pain of the plain plane. In Proceedings of the 2015 IEEE international conference on robotics and automation (pp. 5226–5231).

  • Saxena, A., Chung, S. H., & Ng, A. Y. (2005). Learning depth from single monocular images. In Advances in neural information processing systems (pp. 1161–1168).

  • Saxena, A., Sun, M., & Ng, A. Y. (2008). Make3d: Depth perception from a single still image. In AAAI (pp. 1571–1576).

  • Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor segmentation and support inference from RGBD images. In ECCV.

  • Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2), 189–210.

    Article  Google Scholar 

  • Stühmer, J., Gumhold, S., & Cremers, D. (2010). Real-time dense geometry from a handheld camera. In Pattern recognition, Springer (pp. 11–20).

  • Sturm, P., & Maybank, S. (1999). A method for interactive 3d reconstruction of piecewise planar objects from single images. In The 10th British machine vision conference (BMVC’99) (pp. 265–274).

  • Tsai, G., Xu, C., Liu, J., & Kuipers, B. (2011). Real-time indoor scene understanding using bayesian filtering with motion cues. In 2011 IEEE international conference on computer vision (ICCV), IEEE (pp. 121–128).

  • Vanegas, C. A., Aliaga, D. G., & Benes, B. (2010). Building reconstruction using manhattan-world grammars. In 2010 IEEE conference on computer vision and pattern recognition (CVPR), IEEE (pp. 358–365).

Download references

Acknowledgments

This research was funded by the Spanish government with the Projects DPI2012-32168, DPI2012-32100 and IPT-2012-1309-430000. We would like to thank Marta Salas for her help with the NYU dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejo Concha.

Additional information

This is one of several papers published in Autonomous Robots comprising the “Special Issue on Robotics Science and Systems”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Concha, A., Hussain, W., Montano, L. et al. Incorporating scene priors to dense monocular mapping. Auton Robot 39, 279–292 (2015). https://doi.org/10.1007/s10514-015-9465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9465-9

Keywords

Navigation