Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 < σ = \(\tfrac{{N||f||_{ - 1} }} {{\nu ^2 }}\)\(\tfrac{1}{{\sqrt 2 + 1}}\), the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 < σ ≤ 5/11, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes, which improves the previous results. A numerical test is given to verify the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, F. Y., Ma, Y. C., and Wo, W. F. Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl. Math. Mech.-Engl. Ed., 28(1), 27–35 (2007) DOI 10.1007/s10483-007-0104-x

    Article  MATH  MathSciNet  Google Scholar 

  2. Shang, Y. Q. and Luo, Z. D. A parallel two-level finite element method for the Navier-Stokes equations. Appl. Math. Mech.-Engl. Ed., 31(11), 1429–1438 (2010) DOI 10.1007/s10483-010-1373-7

    Google Scholar 

  3. Huang, P. Z., He, Y. N., and Feng, X. L. Two-level stabilized finite element method for Stokes eigenvalue problem. Appl. Math. Mech.-Engl. Ed., 33(5), 621–630 (2012) DOI 10.1007/s10483012-1575-7

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, G., Feng, M. F., and He, Y. N. Unified analysis for stabilized methods of low-order mixed finite elements for stationary Navier-Stokes equations. Appl. Math. Mech.-Engl. Ed., 34(8), 953–970 (2013) DOI 10.1007/s10483-013-1720-9

    Article  MATH  MathSciNet  Google Scholar 

  5. Girault, V. and Lions, J. L. Two-grid finite element scheme for the steady Navier-Stokes equations in polyhedra. Portugal. Math., 58(1), 25–57 (2001)

    Google Scholar 

  6. Girault, V. and Raviart, P. A. Finite Element Methods for the Navier-Stokes Equations, Spinger- Verlag, Berlin, 278–288 (1986)

    MATH  Google Scholar 

  7. He, Y. N. Euler implicit/explicit iterative scheme for the stationary Navier-Stokes equations. Numer. Math., 123(1), 67–96 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. He, Y. N. and Li, K. T. Two-level stabilized finite element methods for the steady Navier-Stokes equations. Computing, 74(4), 337–351 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. He, Y. N. and Li, J. Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 198(15), 1351–1359 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. He, Y. N. and Li, J. Numerical comparisons of time-space iterative method and spatial iterative methods for the stationary Navier-Stokes equations. J. Comput. Phys., 231(20), 6790–6800 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. He, Y. N., Wang, A. W., Chen, Z. X., and Li, K. T. An optimal nonlinear Galerkin method with mixed finite elements for the steady Navier-Stokes equations. Numer. Methods PDEs, 19(6), 762–775 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Layton, W. J. A two-level discretization method for the Navier-Stokes equations. Comput. Math. Appl., 26(2), 33–38 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Layton, W. J., Lee, H. K., and Peterson, J. Numerical solution of the stationary Navier-Stokes equations using a multilevel finite element method. SIAM J. Sci. Comput., 20(1), 1–12 (1998)

    Article  MathSciNet  Google Scholar 

  14. Temam, R. Navier-Stokes Equations, North-Holland, Amsterdam, 158–168 (1984)

    MATH  Google Scholar 

  15. Xu, H. and He, Y. N. Some iterative finite element methods for steady Navier-Stokes equations with different viscosities. J. Comput. Phys., 232(1), 136–152 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Girault, V. and Lions, J. L. Two-grid finite element scheme for the transient Navier-Stokes problem. Math. Model. Numer. Anal., 35(5), 945–980 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. He, Y. N. Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal., 41(4), 1263–1285 (2004)

    Article  Google Scholar 

  18. He, Y. N. and Li, K. T. Asymptotic behavior and time discretization analysis for the nonstationary Navier-Stokes problem. Numer. Math., 98(4), 647–673 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. He, Y. N. and Sun, W. W. Stability and convergence of the Crank-Nicolson/ Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal., 45(2), 837–869 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Heywood, J. G. and Rannacher, R. Finite element approximation of the nonstationary Navier- Stokes problem, I: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal., 19(2), 275–311 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Heywood, J. G. and Rannacher, R. Finite element approximations of the nonstationary Navier- Stokes problem, II: stability of the solution and error estimates uniform in time. SIAM J. Numer. Anal., 23(4), 750–777 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Heywood, J. G. and Rannacher, R. Finite element approximations of the nonstationary Navier- Stokes problem, III: smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal., 25(3), 489–512 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hill, A. T. and Süli, E. Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal., 20(4), 633–667 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Labovsky, A., Layton, W. J., Manica, C. C., Neda, M., and Rebholz, L. G. The stabilized extrapolated trapezoidal finite element method for the Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 198(9), 958–974 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, K. T., Huang, A. X., and Huang, Q. H. Finite Element Methods and Their Applications (in Chinese), Academic Press, Beijing, 344–347 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11271298)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Dong, X., An, Y. et al. New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations. Appl. Math. Mech.-Engl. Ed. 36, 863–872 (2015). https://doi.org/10.1007/s10483-015-1953-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1953-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation