Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Semantic-spatial guided context propagation network for camouflaged object detection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Camouflaged object detection (COD) aims to detect objects that blend in with their surroundings and is a challenging task in computer vision. High-level semantic information and low-level spatial information play important roles in localizing camouflaged objects and reinforcing spatial cues. However, current COD methods directly connect high-level features with low-level features, ignoring the importance of the respective features. In this paper, we design a Semantic-spatial guided Context Propagation Network (SCPNet) to efficiently mine semantic and spatial features while enhancing their feature representations. Firstly, we design a twin positioning module (TPM) to explore semantic cues to accurately locate camouflaged objects. Afterward, we introduce a spatial awareness module (SAM) to mine spatial cues in shallow features deeply. Finally, we develop a context propagation module (CPM) to assign semantic and spatial cues to multi-level features and enhance their feature representations. Experimental results show that our SCPNet outperforms state-of-the-art methods on three challenging datasets. Codes will be made available at https://github.com/RJC0608/SCPNet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Fan DP, Ji GP, Zhou T, Chen G, Fu H, Shen J, Shao L (2020) Pranet: Parallel reverse attention network for polyp segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 263–273

  2. Xiao B, Hu J, Li W, Pun CM, Bi X (2024) Ctnet: Contrastive transformer network for polyp segmentation. IEEE Trans Cybern

  3. Fan DP, Zhou T, Ji GP, Zhou Y, Chen G, Fu H, Shen J, Shao L (2020) Inf-net: Automatic covid-19 lung infection segmentation from ct images. IEEE Trans Med Imaging 39(8):2626–2637

  4. Wu YH, Gao SH, Mei J, Xu J, Fan DP, Zhang RG, Cheng MM (2021) Jcs: An explainable covid-19 diagnosis system by joint classification and segmentation. IEEE Trans Image Process 30:3113–3126

    Article  Google Scholar 

  5. Bao Y, Song K, Liu J, Wang Y, Yan Y, Yu H, Li X (2021) Triplet-graph reasoning network for few-shot metal generic surface defect segmentation. IEEE Trans Instrum Meas 70:1–11

    MATH  Google Scholar 

  6. Zhou X, Fang H, Liu Z, Zheng B, Sun Y, Zhang J, Yan C (2021) Dense attention-guided cascaded network for salient object detection of strip steel surface defects. IEEE Trans Instrum Meas 71:1–14

    Google Scholar 

  7. Abdi A, Safabakhsh R (2022) An automatic graphic pattern generation algorithm and its application to the multipurpose camouflage pattern design. IEEE Trans Cybern

  8. Liu M, Di X (2023) Extraordinary mhnet: military high-level camouflage object detection network and dataset. Neurocomput 549

  9. Chen G, Liu SJ, Sun YJ, Ji GP, Wu YF, Zhou T (2022) Camouflaged object detection via context-aware cross-level fusion. IEEE Trans Circ Syst Video Technol 32(10):6981–6993

    Article  Google Scholar 

  10. Yan X, Sun M, Han Y, Wang Z (2023) Camouflaged object segmentation based on matching–recognition–refinement network. IEEE Trans Neural Netw Learn Syst

  11. Zhang Y, Zhang J, Hamidouche W, Deforges O (2023) Predictive uncertainty estimation for camouflaged object detection. IEEE Trans Image Process

  12. He C, Li K, Zhang Y, Tang L, Zhang Y, Guo Z, Li X (2023) Camouflaged object detection with feature decomposition and edge reconstruction. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 22046–22055

  13. Ge Y, Ren J, Zhang C, He M, Bi H, Zhang Q (2024) Feature-aware and iterative refinement network for camouflaged object detection. Vis Comput 1–18

  14. Ge Y, Zhong Y, Ren J, He M, Bi H, Zhang Q (2024) Camouflaged object detection via location-awareness and feature fusion. Image Vis Comput 105339

  15. Ge Y, Liang T, Ren J, Chen J, Bi H (2024) Enhanced salient object detection in remote sensing images via dual-stream semantic interactive network. Vis Comput 1–17

  16. Fan DP, Ji GP, Sun G, Cheng MM, Shen J, Shao L (2020) Camouflaged object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2777–2787

  17. Yang F, Zhai Q, Li X, Huang R, Luo A, Cheng H, Fan DP (2021) Uncertainty-guided transformer reasoning for camouflaged object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 4146–4155

  18. Zhou X, Wu Z, Cong R (2024) Decoupling and integration network for camouflaged object detection. IEEE Trans Multimed

  19. Yin B, Zhang X, Fan DP, Jiao S, Cheng MM, Van Gool L, Hou Q (2024) Camoformer: Masked separable attention for camouflaged object detection. IEEE Trans Pattern Anal Mach Intell

  20. Yao S, Sun H, Xiang TZ, Wang X, Cao X (2024) Hierarchical graph interaction transformer with dynamic token clustering for camouflaged object detection. IEEE Trans Image Process

  21. Luo Z, Liu N, Zhao W, Yang X, Zhang D, Fan DP, Khan F, Han J (2024) Vscode: General visual salient and camouflaged object detection with 2d prompt learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 17169–17180

  22. Pang Y, Zhao X, Xiang TZ, Zhang L, Lu H (2024) Zoomnext: A unified collaborative pyramid network for camouflaged object detection. IEEE Trans Pattern Anal Mach Intell

  23. Bhajantri NU, Nagabhushan P (2006) Camouflage defect identification: a novel approach. In: 9th international conference on information technology (ICIT’06), IEEE, pp 145–148

  24. Troscianko J, Skelhorn J, Stevens M (2017) Quantifying camouflage: how to predict detectability from appearance. BMC Evol Biol 17:1–13

    Article  Google Scholar 

  25. Pike TW (2018) Quantifying camouflage and conspicuousness using visual salience. Methods Ecol Evol 9(8):1883–1895

    Article  MATH  Google Scholar 

  26. Sengottuvelan P, Wahi A, Shanmugam A (2008) Performance of decamouflaging through exploratory image analysis. In: 2008 1st international conference on emerging trends in engineering and technology, IEEE, pp 6–10

  27. Singh SK, Dhawale CA, Misra S (2013) Survey of object detection methods in camouflaged image. Ieri Procedia 4:351–357

    Article  MATH  Google Scholar 

  28. Mei H, Ji GP, Wei Z, Yang X, Wei X, Fan DP (2021) Camouflaged object segmentation with distraction mining. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8772–8781

  29. Li A, Zhang J, Lv Y, Liu B, Zhang T, Dai Y (2021) Uncertainty-aware joint salient object and camouflaged object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10071–10081

  30. Fan DP, Ji GP, Cheng MM, Shao L (2021) Concealed object detection. IEEE Trans Pattern Anal Mach Intell 44(10):6024–6042

    Article  MATH  Google Scholar 

  31. Zhang M, Xu S, Piao Y, Shi D, Lin S, Lu H (2022) Preynet: Preying on camouflaged objects. In: Proceedings of the 30th ACM international conference on multimedia, pp 5323–5332

  32. Zhang Q, Ge Y, Zhang C, Bi H (2023) Tprnet: camouflaged object detection via transformer-induced progressive refinement network. Vis Comput 39(10):4593–4607

    Article  Google Scholar 

  33. Deng Y, Ma J, Li Y, Zhang M, Wang L (2023) Ternary symmetric fusion network for camouflaged object detection. Appl Intell 53(21):25216–25231

    Article  Google Scholar 

  34. Shi C, Ren B, Chen H, Zhao L, Lin C, Zhao Y (2023) Camouflaged object detection based on context-aware and boundary refinement. Appl Intell 53(19):22429–22445

    Article  MATH  Google Scholar 

  35. Sun Y, Xu C, Yang J, Xuan H, Luo L (2025) Frequency-spatial entanglement learning for camouflaged object detection. In: european conference on computer vision, Springer, pp 343–360

  36. Sun Y, Chen G, Zhou T, Zhang Y, Liu N (2021) Context-aware cross-level fusion network for camouflaged object detection. arXiv preprint arXiv:2105.12555

  37. Bi H, Wu R, Liu Z, Zhu H, Zhang C, Xiang TZ (2023) Cross-modal hierarchical interaction network for rgb-d salient object detection. Pattern Recognit 136

  38. Ge Y, Zhang Q, Xiang TZ, Zhang C, Bi H (2022) Tcnet: Co-salient object detection via parallel interaction of transformers and cnns. IEEE Trans Circ Syst Video Technol

  39. Li X, Yang J, Li S, Lei J, Zhang J, Chen D (2023) Locate, refine and restore: A progressive enhancement network for camouflaged object detection. In: Proceedings of the 32nd international joint conference on artificial intelligence IJCAI, pp 1116–1124

  40. Zhang C, Bi H, Mo D, Sun W, Tong J, Jin W, Sun Y (2024) Ccnet: Collaborative camouflaged object detection via decoder-induced information interaction and supervision refinement network. Eng Appl Artif Intell 133

  41. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  MATH  Google Scholar 

  42. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473

  43. Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H (2019) Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 3146–3154

  44. Zhai Q, Li X, Yang F, Chen C, Cheng H, Fan DP (2021) Mutual graph learning for camouflaged object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12997–13007

  45. Pei J, Cheng T, Fan DP, Tang H, Chen C, Van Gool L (2022) Osformer: one-stage camouflaged instance segmentation with transformers. In: european conference on computer vision, Springer, pp 19–37

  46. He C, Li K, Zhang Y, Zhang Y, Guo Z, Li X, Danelljan M, Yu F (2023) Strategic preys make acute predators: Enhancing camouflaged object detectors by generating camouflaged objects. arXiv preprint arXiv:2308.03166

  47. Li C, Jiao G, Yue G, He R, Huang J (2024) Multi-scale pooling learning for camouflaged instance segmentation. Appl Intell pp 1–15

  48. Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: International conference on machine learning, PMLR, pp 6105–6114

  49. Zhang H, Goodfellow I, Metaxas D, Odena A (2019) Self-attention generative adversarial networks. In: International conference on machine learning, PMLR, pp 7354–7363

  50. Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: Artificial intelligence and statistics, PMLR, pp 562–570

  51. De Boer PT, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on the cross-entropy method. Ann Oper Res 134:19–67

    Article  MathSciNet  MATH  Google Scholar 

  52. Máttyus G, Luo W, Urtasun R (2017) Deeproadmapper: Extracting road topology from aerial images. In: Proceedings of the IEEE international conference on computer vision, pp 3438–3446

  53. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch: An imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32

  54. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

  55. Le TN, Nguyen TV, Nie Z, Tran MT, Sugimoto A (2019) Anabranch network for camouflaged object segmentation. Comp Vision Image Underst 184:45–56

    Article  MATH  Google Scholar 

  56. Lv Y, Zhang J, Dai Y, Li A, Liu B, Barnes N, Fan DP (2021) Simultaneously localize, segment and rank the camouflaged objects. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 11591–11601

  57. Fan DP, Cheng MM, Liu Y, Li T, Borji A (2017) Structure-measure: A new way to evaluate foreground maps. In: Proceedings of the IEEE international conference on computer vision, pp 4548–4557

  58. Perazzi F, Krähenbühl P, Pritch YHornung A (2012) Saliency filters: Contrast based filtering for salient region detection. In: 2012 IEEE conference on computer vision and pattern recognition, IEEE, pp 733–740

  59. Fan DP, Gong C, Cao Y, Ren B, Cheng MM, Borji A (2018) Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421

  60. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 1597–1604

  61. Ji GP, Zhu L, Zhuge M, Fu K (2022) Fast camouflaged object detection via edge-based reversible re-calibration network. Pattern Recognit 123

  62. Fan DP, Ji GP, Cheng MM, Shao L (2022) Concealed object detection. IEEE Trans Pattern Anal Mach Intell 44(10):6024–6042

    Article  MATH  Google Scholar 

  63. Zhu H, Li P, Xie H, Yan X, Liang D, Chen D, Wei M, Qin J (2022) I can find you! boundary-guided separated attention network for camouflaged object detection. In: Proceedings of the AAAI conference on artificial intelligence, vol 36, pp 3608–3616

  64. Zhou T, Zhou Y, Gong C, Yang J, Zhang Y (2022) Feature aggregation and propagation network for camouflaged object detection. IEEE Trans Image Process 31:7036–7047

    Article  MATH  Google Scholar 

  65. Chen T, Xiao J, Hu X, Zhang G, Wang S (2022) Boundary-guided network for camouflaged object detection. Knowl-Based Syst 248

  66. He R, Dong Q, Lin J, Lau RW (2023) Weakly-supervised camouflaged object detection with scribble annotations. In: Proceedings of the AAAI conference on artificial intelligence, vol 37, pp 781–789

  67. Ji GP, Fan DP, Chou YC, Dai D, Liniger A, Van Gool L (2023) Deep gradient learning for efficient camouflaged object detection. Mach Intell Res 20(1):92–108

    Article  Google Scholar 

  68. Ge Y, Ren J, Zhang Q, He M, Bi H, Zhang C (2024) Camouflaged object detection via cross-level refinement and interaction network. Image Vis Comput 144

  69. Chen LC, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587

  70. Liu S, Huang D et al (2018) Receptive field block net for accurate and fast object detection. In: Proceedings of the European conference on computer vision (ECCV), pp 385–400

Download references

Acknowledgements

This paper was supported by the Natural Science Foundation of Heilongjiang Province (No.LH2022F005).

Author information

Authors and Affiliations

Authors

Contributions

Junchao Ren: Methodology, Writing-Original draft preparation and Software. Qiao Zhang: Data curation, Software, Methodology. Bingbing Kang: Visualization, Investigation. Yuxi Zhong: Conceptualization, Methodology. Min He: Software, Conceptualization. Yanliang Ge: Writing-Reviewing, Editing and Supervision. Hongbo Bi: Supervision, Writing-Reviewing.

Corresponding authors

Correspondence to Yanliang Ge or Hongbo Bi.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Zhang, Q., Kang, B. et al. Semantic-spatial guided context propagation network for camouflaged object detection. Appl Intell 55, 349 (2025). https://doi.org/10.1007/s10489-025-06264-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-025-06264-0

Keywords

Navigation