Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A bi-layer decomposition algorithm for many-objective optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Decomposition-based evolutionary algorithms have shown great potential in solving many-objective optimization problems (MaOPs). However, manual parameters (e.g., neighbor size and scalarizing function) and the specified weight vector can easily degrade the performance of the algorithm, especially for MaOPs with irregular Pareto fronts. This paper presents a new decomposition-based evolutionary algorithm that adopts a bi-layer decision strategy to balance convergence and diversity of solutions for MaOPs, and it is free from neighborhood update and scalarizing methods. In the first layer decision, the well-converged solutions in each subregion form a primary population, where an adaptive fitness assignment considering the Pareto front shape is used to accelerate convergence. In the second layer decision, solutions in the primary population are ranked based on the diversity metric. The low-ranking solutions are added to the final population size until the population size is met. Further, to approximate the true PF as soon as possible, the intensity of convergence in the first layer decision and the activation frequency of the re-balance strategy are regulated. Moreover, we design a re-balance selection strategy to alleviate the dilemma of the specified weight vectors. The re-balance selection uses a clustering approach to adjust weight vectors to promote the uniform distribution of solutions. Finally, algorithms are verified on 150 test instances and one practical design problem. The experimental results show that the proposed algorithm performs better than five state-of-the-art peer algorithms on at least 64% test instances concerning hypervolume and has superiority over competitors on at least 72% test instances concerning the inverted generational distance plus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Subproblems are determined by weight vectors, and each of them only optimizes the corresponding direction. The subregion is divided by weight vectors, and it decomposes the objective space.

References

  1. Tirkolaee EB, Goli A, Faridnia A, Soltani M, Weber GW (2020) Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using pareto-based algorithms. J Clean Prod 276(122):927. https://doi.org/10.1016/j.jclepro.2020.122927

    Google Scholar 

  2. Tirkolaee EB, Goli A, Weber GW (2020) Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE Trans Fuzzy Syst 28(11):2772–2783. https://doi.org/10.1109/TFUZZ.2020.2998174

    Article  Google Scholar 

  3. Tirkolaee EB, Mardani A, Dashtian Z, Soltani M, Weber GW (2020) A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. J Clean Prod 250(119):517. https://doi.org/10.1016/j.jclepro.2019.119517

    Google Scholar 

  4. Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary algorithms: a survey. ACM Computing Surveys (CSUR) 48(1):1–35

    Article  MathSciNet  Google Scholar 

  5. Chen L, Liu HL, Tan KC, Cheung YM, Wang Y (2019) Evolutionary many-objective algorithm using decomposition-based dominance relationship. IEEE Trans Cybern 49(12):4129–4139. https://doi.org/10.1109/tcyb.2018.2859171

    Article  Google Scholar 

  6. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  7. Zitzler E, Laumanns M, Thiele L (2001) Spea2: Improving the strength pareto evolutionary algorithm. TIK-report 103

  8. Li M, Yang S, Liu X (2014) Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Trans Evol Comput 18(3):348–365. https://doi.org/10.1109/tevc.2013.2262178

    Article  Google Scholar 

  9. Li M, Yang S, Liu X (2015) Bi-goal evolution for many-objective optimization problems. Artif Intell 228:45–65. https://doi.org/10.1016/j.artint.2015.06.007

    Article  MathSciNet  Google Scholar 

  10. Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Ccomputation 10(3):263–282. https://doi.org/10.1162/106365602760234108

    Article  Google Scholar 

  11. Farina M, Amato P (2004) A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Trans Syst Man Cybern-Part A Syst Humans 34(3):315–326. https://doi.org/10.1109/TSMCA.2004.824873

    Article  Google Scholar 

  12. Liu Y, Zhu N, Li K, Li M, Zheng J, Li K (2020) An angle dominance criterion for evolutionary many-objective optimization. Inf Sci 509:376–399. https://doi.org/10.1016/j.ins.2018.12.078

    Article  MathSciNet  Google Scholar 

  13. Liu Y, Zhu N, Li M (2021) Solving many-objective optimization problems by a pareto-based evolutionary algorithm with preprocessing and a penalty mechanism. IEEE Trans Cybern 51(11):5585–5594. https://doi.org/10.1109/TCYB.2020.2988896

    Article  Google Scholar 

  14. Wagner T, Beume N, Naujoks B (2007) Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: International conference on evolutionary multi-criterion optimization. Springer, pp 742–756

  15. Adra SF, Fleming PJ (2010) Diversity management in evolutionary many-objective optimization. IEEE Trans Evol Comput 15(2):183–195. https://doi.org/10.1109/TEVC.2010.2058117

    Article  Google Scholar 

  16. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, pp 832–842

  17. Brockhoff D, Wagner T, Trautmann H (2012) On the properties of the r2 indicator. In: Proceedings of the 14th annual conference on Genetic and evolutionary computation, pp 465–472

  18. Bader J, Zitzler E (2011) Hype: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76

    Article  Google Scholar 

  19. Falcón-Cardona JG, Coello CAC (2020) Indicator-based multi-objective evolutionary algorithms: a comprehensive survey. ACM Computing Surveys (CSUR) 53(2):1–35. https://doi.org/10.1145/3376916

    Article  Google Scholar 

  20. Sun Y, Yen GG, Yi Z (2019) IGD Indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans Evol Comput 23(2):173–187. https://doi.org/10.1109/tevc.2018.2791283

    Article  Google Scholar 

  21. Pamulapati T, Mallipeddi R (2019) Suganthan, P.N.: \({i_{\text {{{SDE}}}}}^{+}\)—an indicator for multi and many-objective optimization. IEEE Trans Evol Comput 23(2):346–352. https://doi.org/10.1109/TEVC.2018.2848921

    Article  Google Scholar 

  22. Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evolution Comput 11(6):712–731

    Article  Google Scholar 

  23. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601. https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  24. Wang R, Zhang Q, Zhang T (2016) Decomposition-based algorithms using pareto adaptive scalarizing methods. IEEE Trans Evol Comput 20(6):821–837. https://doi.org/10.1109/tevc.2016.2521175

    Article  Google Scholar 

  25. Chen L, Liu HL, Tan KC, Cheung YM, Wang Y (2018) Evolutionary many-objective algorithm using decomposition-based dominance relationship. IEEE Trans Cybern 49(12):4129–4139. https://doi.org/10.1109/TCYB.2018.2859171

    Article  Google Scholar 

  26. Zhao C, Zhou Y, Chen Z (2021) Decomposition-based evolutionary algorithm with automatic estimation to handle many-objective optimization problem. Inf Sci 546:1030–1046. https://doi.org/10.1016/j.ins.2020.08.084

    Article  MathSciNet  Google Scholar 

  27. He X, Zhou Y, Chen Z, Zhang Q (2019) Evolutionary many-objective optimization based on dynamical decomposition. IEEE Trans Evol Comput 23(3):361–375. https://doi.org/10.1109/tevc.2018.2865590

    Article  Google Scholar 

  28. Sun Y, Xue B, Zhang M, Yen GG (2019) A new two-stage evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 23(5):748–761. https://doi.org/10.1109/tevc.2018.2882166

    Article  Google Scholar 

  29. Liu Y, Ishibuchi H, Masuyama N, Nojima Y (2020) Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular pareto fronts. IEEE Trans Evol Comput 1–1. https://doi.org/10.1109/tevc.2019.2926151

  30. Cui Z, Chang Y, Zhang J, Cai X, Zhang W (2019) Improved nsga-iii with selection-and-elimination operator. Swarm Evolution Comput 49:23–33. https://doi.org/10.1016/j.swevo.2019.05.011

    Article  Google Scholar 

  31. Xiang Y, Zhou Y, Yang X, Huang H (2020) A many-objective evolutionary algorithm with pareto-adaptive reference points. IEEE Trans Evol Comput 24(1):99–113. https://doi.org/10.1109/tevc.2019.2909636

    Article  Google Scholar 

  32. Li M, Yang S, Liu X (2016) Pareto or non-pareto: Bi-criterion evolution in multiobjective optimization. IEEE Trans Evol Comput 20(5):645–665. https://doi.org/10.1109/tevc.2015.2504730

    Article  Google Scholar 

  33. Ikeda K, Kita H, Kobayashi S (2001) Failure of pareto-based moeas: Does non-dominated really mean near to optimal?. In: Congress on evolutionary computation (IEEE cat. no. 01TH8546). https://doi.org/10.1109/CEC.2001.934293, vol 2. IEEE, pp 957–962

  34. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416. https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  35. Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering algorithm. J R Stat Soc Ser C (Appl Stat) 28(1):100–108. https://doi.org/10.2307/2346830

    MATH  Google Scholar 

  36. Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657

    Article  MathSciNet  Google Scholar 

  37. Deb K (2014) Multi-objective optimization. In: Search methodologies. Springer, pp 403–449

  38. Sato H (2014) Inverted pbi in moea/d and its impact on the search performance on multi and many-objective optimization. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation, pp 645–652. https://doi.org/10.1145/2576768.2598297

  39. Ishibuchi H, He L, Shang K (2019) Regular pareto front shape is not realistic. In: 2019 IEEE Congress on evolutionary computation (CEC). IEEE, pp 2034–2041. https://doi.org/10.1109/CEC.2019.8790342

  40. Yan D, Huang L, Jordan MI (2009) Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 907–916. https://doi.org/10.1109/CEC.2019.8790342

  41. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary multiobjective optimization. Springer, pp 105–145

  42. Ishibuchi H, Setoguchi Y, Masuda H, Nojima Y (2017) Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes. IEEE Trans Evol Comput 21 (2):169–190. https://doi.org/10.1109/tevc.2016.2587749

    Article  Google Scholar 

  43. Huband S, Barone L, While L, Hingston P (2005) A scalable multi-objective test problem toolkit. In: International conference on evolutionary multi-criterion optimization. Springer, pp 280–295

  44. Li H, Deb K, Zhang Q, Suganthan P, Chen L (2019) Comparison between moea/d and nsga-iii on a set of novel many and multi-objective benchmark problems with challenging difficulties. Swarm Evolution Comput 46:104–117. https://doi.org/10.1016/j.swevo.2019.02.003

    Article  Google Scholar 

  45. Liao X, Li Q, Yang X, Zhang W, Li W (2008) Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct Multidiscip Optim 35(6):561–569

    Article  Google Scholar 

  46. Ishibuchi H, Masuda H, Nojima Y (2015) Pareto fronts of many-objective degenerate test problems. IEEE Trans Evol Comput 20(5):807–813. https://doi.org/10.1109/TEVC.2015.2505784

    Article  Google Scholar 

  47. Deb K, Agrawal RB, et al. (1995) Simulated binary crossover for continuous search space. Complex Systems 9(2):115–148

    MathSciNet  MATH  Google Scholar 

  48. Deb K, Goyal M (1996) A combined genetic adaptive search (geneas) for engineering design. Comput Sci Inform 26:30–45

    Google Scholar 

  49. Lopez EM, Coello CAC (2016) Igd+-emoa: a multi-objective evolutionary algorithm based on igd+. In: 2016 IEEE Congress on evolutionary computation (CEC). IEEE, pp 999–1006. https://doi.org/10.1109/CEC.2016.7743898

  50. Wang H, Jin Y, Yao X (2017) Diversity assessment in many-objective optimization. IEEE Trans Cybern 47(6):1510–1522. https://doi.org/10.1109/tcyb.2016.2550502

    Article  Google Scholar 

  51. Woolson R (2007) Wilcoxon signed-rank test. Wiley Encyclopedia of Clinical Trials 1–3. https://doi.org/10.1002/9780471462422.eoct979

  52. Xiang Y, Zhou Y, Tang L, Chen Z (2017) A decomposition-based many-objective artificial bee colony algorithm. IEEE Trans Cybern 49(1):287–300. https://doi.org/10.1109/TCYB.2017.2772250

    Article  Google Scholar 

  53. Ishibuchi H, Imada R, Setoguchi Y, Nojima Y (2018) Reference point specification in inverted generational distance for triangular linear pareto front. IEEE Trans Evol Comput 22(6):961–975

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the anonymous reviewers and the Associate Editor for their constructive comments and suggestions, which greatly improve this paper. This work was supported by the NSFC (61773410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuren Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zhou, Y., Hao, Y. et al. A bi-layer decomposition algorithm for many-objective optimization problems. Appl Intell 52, 15122–15142 (2022). https://doi.org/10.1007/s10489-021-03135-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-03135-2

Keywords

Navigation