Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

High average-utility itemsets mining: a survey

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

HUIM (High utility itemsets mining) is a sub-division of data mining dealing with the task to obtain promising patterns in the quantitative datasets. A variant of HUIM is to discover the HAUIM (High average-utility itemsets mining) where average-utility measure is used to obtain the utility of itemsets. HAUIM is the refined version of FIM (Frequent itemset mining) problem and has various applications in the field of market basket analysis, bio-informatics, text mining, network traffic analysis, product recommendation and e-learning among others. In this paper, we provide a comprehensive survey of the state-of-the-art methods of HAUIM to mine the HAUIs (High average-utility itemsets) from the static and dynamic datasets since the induction of the HAUIM problem. We discuss the pros and cons of each category of mining approaches in detail. The taxonomy of HAUIM is presented according to the mining approaches. Finally,various extensions, future directions and research opportunities of HAUIM algorithms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Any superset of a non-frequent itemset is also non-frequent.

References

  1. Agarwal R, Srikant R, et al. (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th VLDB conference, pp 487–499

  2. Ahmed CF, Tanbeer SK, Jeong BS (2010) A novel approach for mining high-utility sequential patterns in sequence databases. ETRI J 32(5):676–686

    Article  Google Scholar 

  3. Ahmed CF, Tanbeer SK, Jeong BS, Choi HJ (2012) Interactive mining of high utility patterns over data streams. Expert Syst Appl 39(15):11979–11991

    Article  Google Scholar 

  4. Alkan OK, Karagoz P (2015) Crom and huspext: Improving efficiency of high utility sequential pattern extraction. IEEE Trans Knowl Data Eng 27(10):2645–2657

    Article  Google Scholar 

  5. Boulicaut JF, Bykowski A, Rigotti C (2003) Free-sets: a condensed representation of boolean data for the approximation of frequency queries. Data Min Knowl Disc 7(1):5–22

    Article  MathSciNet  Google Scholar 

  6. Chang JH, Lee WS (2004) A sliding window method for finding recently frequent itemsets over online data streams. J Info Sci Eng 20(4):753–762

    Google Scholar 

  7. Chang JH, Lee WS (2006) Finding recently frequent itemsets adaptively over online transactional data streams. Inf Syst 31(8):849–869

    Article  Google Scholar 

  8. Chen H, Shu L, Xia J, Deng Q (2012) Mining frequent patterns in a varying-size sliding window of online transactional data streams. Inf Sci 215:15–36

    Article  MathSciNet  Google Scholar 

  9. Chen L, Mei Q (2014) Mining frequent items in data stream using time fading model. Inf Sci 257:54–69

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheung DW, Han J, Ng VT, Wong C (1996) Maintenance of discovered association rules in large databases: an incremental updating technique. In: Proceedings of the twelfth international conference on data engineering. IEEE, pp 106–114

  11. Cheung DW, Lee SD, Kao B (1997) A general incremental technique for maintaining discovered association rules. In: Database systems for advanced applications’ 97. World Scientific, pp 185–194

  12. Chu C, Tseng V, Liang T (2009) An efficient algorithm for mining high utility itemsets with negative item values in large databases. Appl Math Comput 215(2):767–778

    MATH  Google Scholar 

  13. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  14. Duong QH, Liao B, Fournier-Viger P, Dam TL (2016) An efficient algorithm for mining the top-k high utility itemsets, using novel threshold raising and pruning strategies. Knowl-Based Syst 104:106–122

    Article  Google Scholar 

  15. Fouad MR, Elbassioni K, Bertino E (2014) A supermodularity-based differential privacy preserving algorithm for data anonymization. IEEE Trans Knowl Data Eng 26(7):1591–1601

    Article  Google Scholar 

  16. Fournier-Viger P, Gomariz A, Campos M, Thomas R (2014) Fast vertical mining of sequential patterns using co-occurrence information. In: Pacific-asia conference on knowledge discovery and data mining. Springer, pp 40–52

  17. Fournier-Viger P, Li Z, Lin JCW, Kiran RU, Fujita H (2019) Efficient algorithms to identify periodic patterns in multiple sequences. Inf Sci 489:205–226

    Article  MathSciNet  MATH  Google Scholar 

  18. Fournier-Viger P, Lin JCW, Vo B, Chi TT, Zhang J, Le HB (2017) A survey of itemset mining. Wiley Interdiscip Rev Data Min Knowl Discov 7(4):e1207

  19. Fournier-Viger P, Wu CW, Zida S, Tseng V (2014) Fhm: Faster high-utility itemset mining using estimated utility co-occurrence pruning. In: International symposium on methodologies for intelligent systems. Springer, pp 83–92

  20. Fournier-Viger P, Zida S (2015) Foshu: faster on-shelf high utility itemset mining–with or without negative unit profit. In: Proceedings of the 30th annual ACM symposium on applied computing, pp 857–864

  21. Ghazikhani A, Monsefi R, Yazdi HS (2014) Online neural network model for non-stationary and imbalanced data stream classification. Int J Mach Learn Cybern 5(1):51–62

    Article  Google Scholar 

  22. Hamrouni T, Yahia SB, Nguifo EM (2009) Sweeping the disjunctive search space towards mining new exact concise representations of frequent itemsets. Data Knowl Eng 68(10):1091–1111

    Article  Google Scholar 

  23. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier

  24. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min Knowl Discov 8(1):53–87

    Article  MathSciNet  Google Scholar 

  25. Hashem T, Ahmed CF, Samiullah M, Akther S, Jeong BS, Jeon S (2014) An efficient approach for mining cross-level closed itemsets and minimal association rules using closed itemset lattices. Expert Syst Appl 41(6):2914–2938

    Article  Google Scholar 

  26. Hong TP, Lee CH, Wang SL (2009) An incremental mining algorithm for high average-utility itemsets. In: 2009 10Th international symposium on pervasive systems, algorithms, and networks. IEEE, pp 421–425

  27. Hong TP, Lee CH, Wang SL (2009) Mining high average-utility itemsets. In: 2009 IEEE International conference on systems, man and cybernetics. IEEE, pp 2526–2530

  28. Hong TP, Lee CH, Wang SL (2011) Effective utility mining with the measure of average utility. Expert Syst Appl 38(7):8259–8265

    Article  Google Scholar 

  29. Hong TP, Lin CW, Wu YL (2008) Incrementally fast updated frequent pattern trees. Expert Syst Appl 34(4):2424–2435

    Article  Google Scholar 

  30. Hong TP, Lin CW, Wu YL (2009) Maintenance of fast updated frequent pattern trees for record deletion. Comput Stat Data Anal 53(7):2485–2499

    Article  MathSciNet  MATH  Google Scholar 

  31. Hong TP, Wang CY, Tao YH (2001) A new incremental data mining algorithm using pre-large itemsets. Intell Data Anal 5(2):111–129

    Article  MATH  Google Scholar 

  32. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Citeseer

  33. Kim D, Yun U (2016) Mining high utility itemsets based on the time decaying model. Intell Data Anal 20(5):1157–1180

    Article  Google Scholar 

  34. Kim D, Yun U (2017) Efficient algorithm for mining high average-utility itemsets in incremental transaction databases. Appl Intell 47(1):114–131

    Article  Google Scholar 

  35. Kim J, Yun U, Yoon E, Lin JCW, Fournier-Viger P (2020) One scan based high average-utility pattern mining in static and dynamic databases. Future Generation Computer Systems

  36. Kiran RU, Reddy PK (2011) Novel techniques to reduce search space in multiple minimum supports-based frequent pattern mining algorithms. In: Proceedings of the 14th international conference on extending database technology, pp 11–20

  37. Koh JL, Shieh SF (2004) An efficient approach for maintaining association rules based on adjusting fp-tree structures. In: International conference on database systems for advanced applications. Springer, pp 417–424

  38. Krishnamoorthy S (2015) Pruning strategies for mining high utility itemsets. Expert Syst Appl 42(5):2371–2381

    Article  Google Scholar 

  39. Krishnamoorthy S (2018) Efficient mining of high utility itemsets with multiple minimum utility thresholds. Eng Appl Artif Intell 69:112–126

    Article  Google Scholar 

  40. Lal K, Mahanti N (2010) Mining association rules in large database by implementing pipelining technique in partition algorithm. Int J Comput Appl 2(4):33–39

    Google Scholar 

  41. Lan GC, Hong TP, Huang JP, Tseng V (2014) On-shelf utility mining with negative item values. Expert Syst Appl 41(7):3450–3459

    Article  Google Scholar 

  42. Lan GC, Hong TP, Tseng V (2012) Efficiently mining high average-utility itemsets with an improved upper-bound strategy. Int J Inf Technol Decis Making 11(05):1009–1030

    Article  Google Scholar 

  43. Lan GC, Hong TP, Tseng V, Wang SL (2014) Applying the maximum utility measure in high utility sequential pattern mining. Expert Syst Appl 41(11):5071–5081

    Article  Google Scholar 

  44. Lan GC, Hong TP, Tseng V, et al. (2012) A projection-based approach for discovering high average-utility itemsets. J Inf Sci Eng 28(1):193–209

    Google Scholar 

  45. Lan GC, Lin CW, Hong TP, Tseng V (2011) Updating high average-utility itemsets in dynamic databases. In: 2011 9Th world congress on intelligent control and automation. IEEE, pp 932–936

  46. Lee G, Yun U, Ryang H (2015) Mining weighted erasable patterns by using underestimated constraint-based pruning technique. J Intell Fuzzy Syst 28(3):1145–1157

    Article  Google Scholar 

  47. Lee G, Yun U, Ryu KH (2014) Sliding window based weighted maximal frequent pattern mining over data streams. Expert Syst Appl 41(2):694–708

    Article  Google Scholar 

  48. Leung CKS, Jiang F (2011) Frequent itemset mining of uncertain data streams using the damped window model. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp 950–955

  49. Li H (2015) On-line and dynamic time warping for time series data mining. Int J Mach Learn Cybern 6(1):145–153

    Article  Google Scholar 

  50. Li HF (2009) Mining top-k maximal reference sequences from streaming web click-sequences with a damped sliding window. Expert Syst Appl 36(8):11304–11311

    Article  Google Scholar 

  51. Li HF, Shan MK, Lee SY (2008) Dsm-fi: an efficient algorithm for mining frequent itemsets in data streams. Knowl Inf Syst 17(1):79–97

    Article  Google Scholar 

  52. Li X, Zaïane O.R, Li Z (2006) Advanced data mining and applications. In: Proceedings of Second International Conference, ADMA. Springer, pp 14–16

  53. Lin CW, Hong TP, Lan GC, Wong JW, Lin WY (2015) Efficient updating of discovered high-utility itemsets for transaction deletion in dynamic databases. Adv Eng Inform 29(1):16–27

    Article  Google Scholar 

  54. Lin CW, Hong TP, Lu WH (2009) The pre-fufp algorithm for incremental mining. Expert Syst Appl 36(5):9498–9505

    Article  Google Scholar 

  55. Lin CW, Hong TP, Lu WH (2010) Efficiently mining high average utility itemsets with a tree structure. In: Asian conference on intelligent information and database systems. Springer, pp 131–139

  56. Lin CW, Lan GC, Hong TP (2012) An incremental mining algorithm for high utility itemsets. Expert Syst Appl 39(8):7173–7180

    Article  Google Scholar 

  57. Lin JCW, Gan W, Fournier-Viger P, Hong TP (2015) Mining high-utility itemsets with multiple minimum utility thresholds. In: Proceedings of the Eighth International C* Conference on Computer Science & Software Engineering, pp 9–17

  58. Lin JCW, Gan W, Fournier-Viger P, Hong TP, Zhan J (2016) Efficient mining of high-utility itemsets using multiple minimum utility thresholds. Knowl-Based Syst 113:100–115

    Article  Google Scholar 

  59. Lin JCW, Li T, Fournier-Viger P, Hong TP, Su JH (2016) Efficient mining of high average-utility itemsets with multiple minimum thresholds. In: Industrial conference on data mining. Springer, pp 14–28

  60. Lin JCW, Li T, Fournier-Viger P, Hong TP, Zhan J, Voznak M (2016) An efficient algorithm to mine high average-utility itemsets. Adv Eng Inform 30(2):233–243

    Article  Google Scholar 

  61. Lin JCW, Li T, Pirouz M, Zhang J, Fournier-Viger P (2020) High average-utility sequential pattern mining based on uncertain databases. Knowl Inf Syst 62(3):1199–1228

    Article  Google Scholar 

  62. Lin JCW, Ren S, Fournier-Viger P (2018) Memu: More efficient algorithm to mine high average-utility patterns with multiple minimum average-utility thresholds. IEEE Access 6:7593–7609

    Article  Google Scholar 

  63. Lin JCW, Ren S, Fournier-Viger P, Hong TP (2017) Ehaupm: Efficient high average-utility pattern mining with tighter upper bounds. IEEE Access 5:12927–12940

    Article  Google Scholar 

  64. Lin JCW, Ren S, Fournier-Viger P, Hong TP (2017) Mining of high average-utility itemsets with a tighter upper-bound model. In: Proceedings of the 4th Multidisciplinary International Social Networks Conference, pp 1–6

  65. Lin JCW, Ren S, Fournier-Viger P, Hong TP, Su JH, Vo B (2017) A fast algorithm for mining high average-utility itemsets. Appl Intell 47(2):331–346

    Article  Google Scholar 

  66. Lin JCW, Ren S, Fournier-Viger P, Pan JS, Hong TP (2018) Efficiently updating the discovered high average-utility itemsets with transaction insertion. Eng Appl Artif Intell 72:136–149

    Article  Google Scholar 

  67. Lin JCW, Ren S, Fournier-Viger P, Su JH, Vo B (2017) More efficient algorithm to mine high average-utility patterns. In: Advances in intelligent information hiding and multimedia signal processing. Springer, pp 101–110

  68. Lin JCW, Shao Y, Fournier-Viger P, Djenouri Y, Guo X (2018) Maintenance algorithm for high average-utility itemsets with transaction deletion. Appl Intell 48(10):3691–3706

    Article  Google Scholar 

  69. Lin JCW, Wu JMT, Fournier-Viger P, Hong TP, Li T (2019) Efficient mining of high average-utility sequential patterns from uncertain databases. In: 2019 IEEE International conference on systems, man and cybernetics (SMC). IEEE, pp 1989–1994

  70. Lin MY, Lee SY (1998) Incremental update on sequential patterns in large databases. In: Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No. 98CH36294). IEEE, pp 24–31

  71. Liu B, Hsu W, Ma Y (1999) Mining association rules with multiple minimum supports. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 337–341

  72. Liu M, Qu J (2012) Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM international conference on Information and knowledge management, pp 55–64

  73. Liu Y, Liao WK, Choudhary A (2005) A fast high utility itemsets mining algorithm. In: Proceedings of the 1st international workshop on Utility-based data mining, pp 90–99

  74. Liu Y, Liao WK, Choudhary A (2005) A two-phase algorithm for fast discovery of high utility itemsets. In: Pacific-asia conference on knowledge discovery and data mining. Springer, pp 689–695

  75. Loukides G, Gkoulalas-Divanis A (2012) Utility-preserving transaction data anonymization with low information loss. Expert Syst Appl 39(10):9764–9777

    Article  Google Scholar 

  76. Lu T, Vo B, Nguyen HT, Hong TP (2015) A new method for mining high average utility itemsets. In: IFIP International conference on computer information systems and industrial management. Springer, pp 33–42

  77. Nguyen D, Nguyen LT, Vo B, Pedrycz W (2016) Efficient mining of class association rules with the itemset constraint. Knowl-Based Syst 103:73–88

    Article  Google Scholar 

  78. Nguyen D, Vo B, Le B (2015) Ccar: an efficient method for mining class association rules with itemset constraints. Eng Appl Artif Intell 37:115–124

  79. Nguyen LTT, Nguyen TD, Nguyen A, Tran PN, Trinh C, Huynh B, Vo B (2020) Efficient method for mining high-utility itemsets using high-average utility measure. In: International conference on computational collective intelligence. Springer, pp 305–315

  80. Ozturk C, Hancer E, Karaboga D (2015) A novel binary artificial bee colony algorithm based on genetic operators. Inf Sci 297:154–170

    Article  MathSciNet  Google Scholar 

  81. Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu MC (2004) Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Trans Knowl Data Eng 16(11):1424–1440

    Article  Google Scholar 

  82. Phuong N, Duy ND (2017) Constructing a new algorithm for high average utility itemsets mining. In: 2017 International conference on system science and engineering (ICSSE). IEEE, pp 273–278

  83. Ryang H, Yun U (2015) Top-k high utility pattern mining with effective threshold raising strategies. Knowl-Based Syst 76:109–126

    Article  Google Scholar 

  84. Ryang H, Yun U (2017) Indexed list-based high utility pattern mining with utility upper-bound reduction and pattern combination techniques. Knowl Inf Syst 51(2):627–659

    Article  Google Scholar 

  85. Ryang H, Yun U, Ryu KH (2014) Discovering high utility itemsets with multiple minimum supports. Intell Data Anal 18(6):1027–1047

    Article  Google Scholar 

  86. Ryang H, Yun U, Ryu KH (2016) Fast algorithm for high utility pattern mining with the sum of item quantities. Intell Data Anal 20(2):395–415

    Article  Google Scholar 

  87. Salam A, Khayal MSH (2012) Mining top- k frequent patterns without minimum support threshold. Knowl Inf Ayst 30(1):57–86

    Article  Google Scholar 

  88. Sarda NL, Srinivas N (1998) An adaptive algorithm for incremental mining of association rules. In: Proceedings Ninth International Workshop on Database and Expert Systems Applications (Cat. No. 98EX130), pp 240–245. IEEE

  89. Savasere A, Omiecinski ER, Navathe SB (1995) An efficient algorithm for mining association rules in large databases. Technical report, Georgia Institute of Technology

  90. Sethi KK, Ramesh D (2020) A fast high average-utility itemset mining with efficient tighter upper bounds and novel list structure. J Supercomput:1–31

  91. Sethi KK, Ramesh D (2020) High average-utility itemset mining with multiple minimum utility threshold: a generalized approach. Eng Appl Artif Intell 96:103933

    Article  Google Scholar 

  92. Shao J, Meng X, Cao L (2016) Mining actionable combined high utility incremental and associated patterns. In: 2016 IEEE International conference on aircraft utility systems (AUS). IEEE, pp 1164–1169

  93. Shie BE, Philip SY, Tseng V (2012) Efficient algorithms for mining maximal high utility itemsets from data streams with different models. Expert Syst Appl 39(17):12947–12960

    Article  Google Scholar 

  94. Singh K, Shakya HK, Biswas B (2015) An efficient approach to discovering frequent patterns from data cube using aggregation and directed graph. In: Proceedings of the Sixth International Conference on Computer and Communication Technology 2015, pp 31–35

  95. Singh K, Shakya HK, Singh A, Biswas B (2018) Mining of high-utility itemsets with negative utility. Expert Syst 35(6):e12296

    Article  Google Scholar 

  96. Tanbeer SK, Ahmed CF, Jeong BS, Lee YK (2009) Efficient single-pass frequent pattern mining using a prefix-tree. Inf Sci 179(5):559–583

    Article  MathSciNet  MATH  Google Scholar 

  97. Tanbeer SK, Ahmed CF, Jeong BS, Lee YK (2009) Sliding window-based frequent pattern mining over data streams. Inf Sci 179(22):3843–3865

    Article  MathSciNet  Google Scholar 

  98. Teng WG, Chen MS, Philip SY (2003) A regression-based temporal pattern mining scheme for data streams. In: Proceedings 2003 VLDB Conference. Elsevier, pp 93–104

  99. Thilagu M, Nadarajan R (2012) Efficiently mining of effective web traversal patterns with average utility. Procedia Technol 6:444–451

    Article  Google Scholar 

  100. Truong T, Duong H, Le B, Fournier-Viger P (2018) Efficient vertical mining of high average-utility itemsets based on novel upper-bounds. IEEE Trans Knowl Data Eng 31(2):301–314

  101. Truong T, Duong H, Le B, Fournier-Viger P (2020) Ehausm: an efficient algorithm for high average utility sequence mining. Inf Sci 515:302–323

  102. Truong T, Duong H, Le B, Fournier-Viger P, Yun U (2019) Efficient high average-utility itemset mining using novel vertical weak upper-bounds. Knowl-Based Syst 183:104847

  103. Tseng V, Chu C, Liang T (2006) An efficient method for mining temporal emerging itemsets from data streams. In: International computer symposium (ICS), workshop on software engineering, databases and knowledge discovery, Taipei

  104. Tseng V, Shie BE, Wu CW, Philip SY (2012) Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans Knowl Data Eng 25(8):1772–1786

    Article  Google Scholar 

  105. Tseng V, Wu CW, Fournier-Viger P, Philip SY (2015) Efficient algorithms for mining top-k high utility itemsets. IEEE Trans Knowl Data Eng 28(1):54–67

    Article  Google Scholar 

  106. Vo B, Coenen F, Le B (2013) A new method for mining frequent weighted itemsets based on wit-trees. Expert Syst Appl 40(4):1256–1264

  107. Vo B, Le T, Pedrycz W, Nguyen G, Baik SW (2017) Mining erasable itemsets with subset and superset itemset constraints. Expert Syst Appl 69:50–61

  108. Wang J, Han J, Lu Y, Tzvetkov P (2005) Tfp: an efficient algorithm for mining top-k frequent closed itemsets. IEEE Trans Knowl Data Eng 17(5):652–663

    Article  Google Scholar 

  109. Wu CW, Shie BE, Tseng V, Yu PS (2012) Mining top-k high utility itemsets. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 78–86

  110. Wu JMT, Lin JCW, Pirouz M, Fournier-Viger P (2018) New tighter upper bounds for mining high average-utility itemsets. In: Proceedings of the 2018 International Conference on Big Data and Education, pp 27–32

  111. Wu JMT, Lin JCW, Pirouz M, Fournier-Viger P (2018) Tub-haupm: Tighter upper bound for mining high average-utility patterns. IEEE Access 6:18655–18669

    Article  Google Scholar 

  112. Wu JMT, Teng Q, Lin JCW, Cheng CF (2020) Incrementally updating the discovered high average-utility patterns with the pre-large concept. IEEE Access 8:66788–66798

    Article  Google Scholar 

  113. Wu JMT, Teng Q, Lin JCW, Yun U, Chen HC (2020) Updating high average-utility itemsets with pre-large concept. J Intell Fuzzy Syst (Preprint):1–10

  114. Wu R, He Z (2018) Top-k high average-utility itemsets mining with effective pruning strategies. Appl Intell 48(10):3429–3445

    Article  Google Scholar 

  115. Wu TY, Lin JCW, Shao Y, Fournier-Viger P, Hong TP (2017) Updating the discovered high average-utility patterns with transaction insertion. In: International conference on genetic and evolutionary computing. Springer, pp 66–73

  116. YILDIRIM I, CELIK M (2018) Fimhaui: Fast incremental mining of high average-utility itemsets. In: 2018 International conference on artificial intelligence and data processing (IDAP). IEEE, pp 1–9

  117. Yildirim I, Celik M (2019) An efficient tree-based algorithm for mining high average-utility itemset. IEEE Access 7:144245–144263

  118. Yin J, Zheng Z, Cao L (2012) Uspan: an efficient algorithm for mining high utility sequential patterns. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 660–668

  119. Yun U, Kim D (2017) Mining of high average-utility itemsets using novel list structure and pruning strategy. Futur Gener Comput Syst 68:346–360

    Article  Google Scholar 

  120. Yun U, Kim D, Ryang H, Lee G, Lee KM (2016) Mining recent high average utility patterns based on sliding window from stream data. J Intell Fuzzy Syst 30(6):3605–3617

    Article  Google Scholar 

  121. Yun U, Kim D, Yoon E, Fujita H (2018) Damped window based high average utility pattern mining over data streams. Knowl-Based Syst 144:188–205

    Article  Google Scholar 

  122. Yun U, Ryang H (2015) Incremental high utility pattern mining with static and dynamic databases. Appl Intell 42(2):323–352

    Article  Google Scholar 

  123. Zaki MJ, Gouda K (2003) Fast vertical mining using diffsets. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 326–335

  124. Zhang B, Lin JCW, Fournier-Viger P, Li T (2017) Mining of high utility-probability sequential patterns from uncertain databases. Plos one 12(7):e0180931

  125. Zhang B, Lin JCW, Shao Y, Fournier-Viger P, Djenouri Y (2018) Maintenance of discovered high average-utility itemsets in dynamic databases. Appl Sci 8(5):769

    Article  Google Scholar 

  126. Zida S, Fournier-Viger P, Lin JCW, Wu CW, Tseng V (2017) Efim: a fast and memory efficient algorithm for high-utility itemset mining. Knowl Inf Syst 51(2):595–625

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Kumar, R. & Biswas, B. High average-utility itemsets mining: a survey. Appl Intell 52, 3901–3938 (2022). https://doi.org/10.1007/s10489-021-02611-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02611-z

Keywords

Navigation