Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Dynamic multi-objective evolutionary algorithm for IoT services

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The primary goal of the Internet of things(IoT) is to provide people with anywhere services in real life. But intelligent IoT shouldn’t only provide services, but also consider how to allocate heterogeneous resources reasonably, which has become a very challenging problem. To obtain the best resource allocation scheme, it is crucial to minimize the service cost and service time. Since the two objectives are contradictory, we have modelled IoT services as a dynamic multi-objective optimization problem. Then a dynamic multi-objective evolutionary algorithm for dynamic IoT services(dMOEA/DI) is proposed. In dMOEA/DI, we have designed operators such as the appropriate encoding method, dynamic detection operator, filtering strategy, differential evolution, and polynomial mutation. Based on the single service strategy and collaborative service strategy, experimental research is performed on the agricultural IoT services with dynamic requests under different distributions. The simulation experimental results prove that dMOEA/DI performs better than the contrasted algorithms on the IoT service optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Li S, Zhang N, Lin S, Kong L, Katangur A, Khan MK, Ni M, Zhu G (2018) Joint admission control and resource allocation in edge computing for internet of things. IEEE Netw 32(1):72–79

    Google Scholar 

  2. Abuzainab N, Saad W, Hong CS, Poor HV (2017) Cognitive hierarchy theory for distributed resource allocation in the internet of things. IEEE Trans Wirel Commun 16(12):7687–7702

    Google Scholar 

  3. Tran-Dang H, Kim DS (2018) An information framework for internet of things services in physical internet. IEEE Access 6:43967–43977

    Google Scholar 

  4. Lin J, Yu W, Zhang N, Yang X, Zhang H, Zhao W (2017) A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J 4(5):1125–1142

    Google Scholar 

  5. Servia-Rodríguez S, Rachuri K K, Mascolo C, et al. (2017) Mobile sensing at the service of mental well-being: a large-scale longitudinal study. Proceedings of the 26th international conference on world wide web 103-112

  6. Bayhan S, Zubow A, Wolisz A (2018) Spass: Spectrum sensing as a service via smart contracts. IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) 2018:1–10

  7. Alsaryrah O, Mashal I, Chung T Y.(2018) Energy-aware services composition for internet of things. 2018 IEEE 4th world forum on internet of things (WF-IoT) 604-608

  8. Alsaryrah O, Mashal I, Chung TY (2018) Bi-objective optimization for energy aware internet of things service composition. IEEE Access 6:26809–26819

    Google Scholar 

  9. Khanouche ME, Gadouche H, Farah Z, Tari A (2020) Flexible QoS-aware services composition for service computing environments. Comput Netw 166:106982

    Google Scholar 

  10. Prenkert F, Hasche N, Linton G (2019) Towards a systematic analytical framework of resource interfaces. J Bus Res 100:139–149

    Google Scholar 

  11. Nebro AJ, Ruiz AB, Barba-González C, García-Nieto J, Luque M, Aldana-Montes JF (2018) InDM2: interactive dynamic multi-objective decision making using evolutionary algorithms. Swarm and Evolutionary Computation 40:184–195

    Google Scholar 

  12. Orouskhani M, Teshnehlab M, Nekoui MA (2019) Evolutionary dynamic multi-objective optimization algorithm based on Borda count method. Int J Mach Learn Cybern 10(8):1931–1959

    Google Scholar 

  13. Chowdhury A, Raut SA (2018) A survey study on internet of things resource management. J Netw Comput Appl 120:42–60

    Google Scholar 

  14. Wan J, Chen B, Imran M, Tao F, Li D, Liu C, Ahmad S (2018) Toward dynamic resources management for IoT-based manufacturing. IEEE Commun Mag 56(2):52–59

    Google Scholar 

  15. Zhang Y, Liu S, Liu Y, Yang H, Li M, Huisingh D, Wang L (2018) The ‘internet of things’ enabled real-time scheduling for remanufacturing of automobile engines. J Clean Prod 185:562–575

    Google Scholar 

  16. Wu D, Zhang Z, Wu S et al (2018) Biologically inspired resource allocation for network slices in 5G-enabled internet of things. IEEE Internet Things J 6(6):9266–9279

    Google Scholar 

  17. Li G, Wu J, Li J, Wang K, Ye T (2018) Service popularity-based smart resources partitioning for fog computing-enabled industrial internet of things. IEEE Transactions on Industrial Informatics 14(10):4702–4711

    Google Scholar 

  18. Hussein D, Han SN, Lee GM, Crespi N, Bertin E (2017) Towards a dynamic discovery of smart services in the social internet of things. Computers & Electrical Engineering 58:429–443

    Google Scholar 

  19. Qiu T, Zheng K, Han M et al (2017) A data-emergency-aware scheduling scheme for internet of things in smart cities. IEEE Transactions on Industrial Informatics 14(5):2042–2051

    Google Scholar 

  20. Tang C, Wei X, Xiao S, Chen W, Fang W, Zhang W, Hao M (2018) A mobile cloud based scheduling strategy for industrial internet of things. IEEE Access 6:7262–7275

    Google Scholar 

  21. Guo YN, Cheng J, Luo S, Gong D, Xue Y (2017) Robust dynamic multi-objective vehicle routing optimization method. IEEE/ACM transactions on computational biology and bioinformatics 15(6):1891–1903

    Google Scholar 

  22. Jiang Y, Hao K, Cai X, et al.(2018) Optimal schedule for agricultural machinery in sequential tasks using a multi-population co-evolutionary non-dominant neighbor immune algorithm. 2018 37th Chinese control conference (CCC) 2259-2264

  23. El-Shorbagy MA, Elhoseny M, Hassanien AE et al (2019) A novel PSO algorithm for dynamic wireless sensor network multiobjective optimization problem. Trans Emerg Telecommun Technol 30(11):e3523

    Google Scholar 

  24. Lu C, Gao L, Li X, Xiao S (2017) A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry. Eng Appl Artif Intell 57:61–79

    Google Scholar 

  25. Tseng FH, Wang X, Chou LD et al (2017) Dynamic resource prediction and allocation for cloud data center using the multiobjective genetic algorithm. IEEE Syst J 12(2):1688–1699

    Google Scholar 

  26. Eaton J, Yang S, Gongora M (2017) Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling. IEEE Trans Intell Transp Syst 18(11):2980–2992

    Google Scholar 

  27. Chaudhry R, Tapaswi S, Kumar N (2019) FZ enabled multi-objective PSO for multicasting in IoT based wireless sensor networks. Inf Sci 498:1–20

    MathSciNet  Google Scholar 

  28. Guo YN, Zhang X, Gong DW, Zhang Z, Yang JJ (2019) Novel interactive preference-based multi-objective evolutionary optimization for bolt supporting networks. IEEE Trans Evol Comput 24:750–764. https://doi.org/10.1109/TEVC.2019.2951217

    Article  Google Scholar 

  29. Han J, Yang C, Zhou X, Gui W (2017) Dynamic multi-objective optimization arising in iron precipitation of zinc hydrometallurgy. Hydrometallurgy 173:134–148

    Google Scholar 

  30. Gong D, Xu B, Zhang Y, Guo Y, Yang S (2020) A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems. IEEE Trans Evol Comput 24(1):142–156

    Google Scholar 

  31. Yang Z, Jin Y, Hao K (2018) A bio-inspired self-learning coevolutionary dynamic multiobjective optimization algorithm for internet of things services. IEEE Trans Evol Comput 23(4):675–688

    Google Scholar 

  32. Azzouz R, Bechikh S, Said LB (2017) Dynamic multi-objective optimization using evolutionary algorithms: a survey. Recent advances in evolutionary multi-objective optimization:31–70

  33. Zhang J, Xing L. (2017) A survey of multiobjective evolutionary algorithms. 2017 IEEE international conference on computational science and engineering (CSE) and IEEE international conference on embedded and ubiquitous computing (EUC) 1: 93-100

  34. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Google Scholar 

  35. Jiang S, Yang S (2017) A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization. IEEE Trans Evol Comput 21(3):329–346

    Google Scholar 

  36. Murata T, Ishibuchi H (1995) MOGA: multi-objective genetic algorithms. IEEE international conference on evolutionary computation 1:289–294

    Google Scholar 

  37. Day R O, Lamont G B. (2005) Extended multi-objective fast messy genetic algorithm solving deception problems. International conference on evolutionary multi-criterion optimization 296-310

  38. Horn J, Nafpliotis N, Goldberg D E.(1994) A niched Pareto genetic algorithm for multiobjective optimization.Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence 82-87

  39. Zitzler E, Laumanns M, Thiele L.(2001) SPEA2: improving the strength Pareto evolutionary algorithm. TIK-report 103

  40. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Google Scholar 

  41. Rudzinski F (2015) Finding sets of non-dominated solutions with high spread and well-balanced distribution using generalized strength Pareto evolutionary algorithm. 2015 Conference of the international fuzzy systems association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15). Atlantis Press. https://doi.org/10.2991/ifsa-eusflat-15.2015.28

  42. Deb K, Jain H (2013) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Google Scholar 

  43. Tan KC, Goh CK, Mamun AA, Ei EZ (2008) An evolutionary artificial immune system for multi-objective optimization. Eur J Oper Res 187(2):371–392

    MathSciNet  MATH  Google Scholar 

  44. Gong M, Jiao L, Du H et al (2008) Multiobjective immune algorithm with nondominated neighbor-based selection. Evolutionary Computation 16(2):225–255

    Google Scholar 

  45. Lin Q, Ma Y, Chen J et al (2018) An adaptive immune-inspired multi-objective algorithm with multiple differential evolution strategies. Inf Sci 430:46–64

    MathSciNet  Google Scholar 

  46. Lin Q, Zhu Q, Wang N, Huang P, Wang W, Chen J, Ming Z (2019) A multi-objective immune algorithm with dynamic population strategy. Swarm and Evolutionary Computation 50:100477

    Google Scholar 

  47. Mirjalili S, Saremi S, Mirjalili SM (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    Google Scholar 

  48. Xu X, Tan Y, Zheng W, Li S (2018) Memory-enhanced dynamic multi-objective evolutionary algorithm based on Lp decomposition. Appl Sci 8(9):1673

    Google Scholar 

  49. Rong M, Gong D, Zhang Y, Pedrycz W (2019) Multidirectional prediction approach for dynamic multiobjective optimization problems. IEEE Transactions on Cybernetics 49(9):3362–3374

    Google Scholar 

  50. Rong M, Gong D, Pedrycz W, Wang L (2020) A multimodel prediction method for dynamic multiobjective evolutionary optimization. IEEE Trans Evol Comput 24(2):290–304

    Google Scholar 

  51. Guo Y, Yang H, Chen M, Cheng J, Gong D (2019) Ensemble prediction-based dynamic robust multi-objective optimization methods. Swarm and Evolutionary Computation 48:156–171

    Google Scholar 

  52. Martinez SZ, Coello CAC (2014) A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization. IEEE Congress on evolutionary computation (CEC) 2014:429–436

  53. Lin S, Lin F, Chen H, Zeng W (2017) A MOEA/D-based multi-objective optimization algorithm for remote medical. Neurocomputing 220:5–16

    Google Scholar 

  54. Zhou Y, Liu J, Zhang Y, Gan X (2017) A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems. Transportation Research Part E: Logistics and Transportation Review 99:77–95

    Google Scholar 

  55. Muruganantham A. (2017) Dynamic multiobjective optimization using evolutionary algorithms. Dissertation, National University of Singapore

  56. Xu X, Tan Y, Zheng W, Li S (2018) Memory-enhanced dynamic multi-objective evolutionary algorithm based on Lp decomposition. Appl Sci 8(9):1673

    Google Scholar 

  57. Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. IEEE congress on evolutionary computation 2009:203–208

  58. Muangprathub J, Boonnam N, Kajornkasirat S, Lekbangpong N, Wanichsombat A, Nillaor P (2019) IoT and agriculture data analysis for smart farm. Comput Electron Agric 156:467–474

    Google Scholar 

  59. Ma X, Zhang Q, Tian G et al (2017) On Tchebycheff decomposition approaches for multiobjective evolutionary optimization. IEEE Trans Evol Comput 22(2):226–244

    Google Scholar 

  60. Wu G, Shen X, Li H, Chen H, Lin A, Suganthan PN (2018) Ensemble of differential evolution variants. Inf Sci 423:172–186

    MathSciNet  Google Scholar 

  61. Cambra C, Sendra S, Lloret J, et al. (2017) An IoT service-oriented system for agriculture monitoring. 2017 IEEE International Conference on Communications (ICC) 1–6

  62. Zhu Q, Zhu Z, Qi Y, Yu H, Xu Y (2018) Optimization of cascading failure on complex network based on NNIA. Physica A: Statistical Mechanics and its Applications 501:42–51

    MathSciNet  Google Scholar 

  63. Lin YH, Huang LC, Chen SY, Yu CM (2018) The optimal route planning for inspection task of autonomous underwater vehicle composed of MOPSO-based dynamic routing algorithm in currents. Appl Ocean Res 75:178–192

    Google Scholar 

  64. Wang H, Deutz A, Back T, et al.(2017) Hypervolume indicator gradient ascent multi-objective optimization. International conference on evolutionary multi-criterion optimization 654-669

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 61972456,41772123); Natural Science Foundation of Tianjin (No. 19JCYBJC15800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-shun Fang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Ss., Chai, Zy. & Li, Yl. Dynamic multi-objective evolutionary algorithm for IoT services. Appl Intell 51, 1177–1200 (2021). https://doi.org/10.1007/s10489-020-01861-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01861-7

Keywords

Navigation