Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A human-like visual-attention-based artificial vision system for wildland firefighting assistance

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this work we contribute to development of a “Human-like Visual-Attention-based Artificial Vision” system for boosting firefighters’ awareness about the hostile environment in which they are supposed to move along. Taking advantage from artificial visual-attention, the investigated system’s conduct may be adapted to firefighter’s way of gazing by acquiring some kind of human-like artificial visual neatness supporting firefighters in interventional conditions’ evaluation or in their appraisal of the rescue conditions of people in distress dying out within the disaster. We achieve such a challenging goal by combining a statistically-founded bio-inspired saliency detection model with a Machine-Learning-based human-eye-fixation model. Hybridization of the two above-mentioned models leads to a system able to tune its parameters in order to fit human-like gazing of the inspected environment. It opens appealing perspectives in computer-aided firefighters’ assistance boosting their awareness about the hostile environment in which they are supposed to evolve. Using as well various available wildland fires images’ databases as an implementation of the investigated concept on a 6-wheeled mobile robot equipped with communication facilities, we provide experimental results showing the plausibility as well as the efficiency of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. FAO (2007) Wildfire management, a burning issue for livelihoods and land-use. Available online: http://www.fao.org/newsroom/en/news/2007/1000570/index.html

  2. San-Miguel-Ayanz J, Ravail N, Kelha V, Ollero A (2005) Active fire detection for emergency management: potential and limitations for the operational use of remote sensing. Nat Hazards 35:361–76

    Article  Google Scholar 

  3. Kukreti SR, Kumar M, Cohen K (2016) Detection and localization using unmanned aerial systems for firefighting applications, AIAA Infotech Aerospace, AIAA SciTech, AIAA 2016–1903

  4. Lu G, Yan Y, Huang Y, Reed A (1999) An intelligent monitoring and control system of combustion flames. Meas Control 32(7):164–68

    Article  Google Scholar 

  5. Chen T, Wu P, Chiou Y (2004) An early fire-detection method based on image processing. In: Proceedings of International Conference on Image Processing, pp 1707–1710

  6. Gilabert G, Lu G, Yan Y (2007) Three-dimensional tomographic renconstruction of the luminosity distribution of a combustion flame. IEEE Trans Instr Measure 56(4):1300–1306

    Article  Google Scholar 

  7. Toulouse T, Rossi L, Celik T, Akhloufi M, Maldague X (2015) Benchmarking of wildland fire color segmentation algorithms. IET Image Process 9(12):1064–1072

    Article  Google Scholar 

  8. Ko BC, Cheong KH, Nam JY (2009) Fire detection based on vision sensor and support vector machines. Fire Saf J 44:322–329

    Article  Google Scholar 

  9. Celik T, Demirel H (2009) Fire detection in video sequences using a generic color model. Fire Saf J 44:147–158

    Article  Google Scholar 

  10. Ho C-C (2009) Machine vision-based real-time early flame and smoke detection. Meas Sci Technol 20(4):045502. https://doi.org/10.1088/0957-0233/20/4/045502

    Article  Google Scholar 

  11. Du S-Y, Liu Z-G (2015) A comparative study of different color spaces in computer-vision-based flame detection. Multimed Tools Appl 75:1–20

    Google Scholar 

  12. Koerich Borges PV, Izquierdo E (2010) A probabilistic approach for vision-based fire detection in videos. IEEE Trans Circuits Syst Video Technol 20(5):721–731

    Article  Google Scholar 

  13. Wang DC, Cui X, Park E, Jin C, Kim H (2013) Adaptive flame detection using randomness testing and robust features. Fire Saf J 55:116–125

    Article  Google Scholar 

  14. Wald A, Wolfowitz J (1943) An exact test for randomness in the non-parametric case based on serial correlation. Ann Math Stat 14(4):378–388

    Article  MathSciNet  MATH  Google Scholar 

  15. Rossi L, Akhloufi M, Tison Y, Pieri A (2011) On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics. Fire Saf J 46(1-2):9–20

    Article  Google Scholar 

  16. Ko B, Jung JH, Nam JY (2014) Fire detection and 3D surface reconstruction based on stereoscopic pictures and probabilistic fuzzy logic. Fire Saf J 68:61–70

    Article  Google Scholar 

  17. Thokale A, Sonar P (2015) Hybrid approach to detect a fire based on motion color and edge. Digital Image Process 7(9):273–277

    Google Scholar 

  18. Kong SG, Jin D, Li S, Kim H (2015) Fast fire flame detection in surveillance video using logistic regression and temporal smoothing. Fire Saf J 79:37–43

    Article  Google Scholar 

  19. Liu Z-G, Yang Y, Ji X-H, (2016) Flame detection algorithm based on a saliency detection technique and the uniform local binary pattern in the YCbCr color space. SIViP 10(2):277–284

    Article  Google Scholar 

  20. Combination of Experts Based on Color (2015) Shape, and Motion. IEEE Trans Circuits Syst Video Technol 25(9):1545–1556

    Article  Google Scholar 

  21. Kleinbaum DG, Klein M (1994) Logistic regression: a self-learning text. Springer, Berlin. ISBN 978-1-4419-1741-6

    Book  MATH  Google Scholar 

  22. Bulas-Cruz J, Ali AT, Dagless EL (1993) A temporal smoothing technique for real-time motion detection. Computer Analysis of Images and Patterns. Springer, Berlin, pp 379–386

    Google Scholar 

  23. Brand RJ, Baldwin DA, Ashburn LA (2002) Evidence for ’motionese’: modifications in mothers infant-directed action. Dev Sci 5:72–83

    Article  Google Scholar 

  24. Wolfe JM, Horowitz TS (2004) What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci 5:495–501

    Article  Google Scholar 

  25. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: Proceedings of IEEE international conference on computer vision and pattern recognition

  26. Itti L, Koch C, Niebur E (1998) A Model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259

    Article  Google Scholar 

  27. Harel J, Koch C, Perona P (2007) Graph-based visual saliency. Adv Neural Inf Proces Syst 19:545–552

    Google Scholar 

  28. Achanta R, Estrada F, Wils P, Susstrunk S (2008) Salient region detection and segmentation. In: Proceedings of international conference on computer vision systems, vol 5008. LNCS, Springer, Berlin / Heidelberg, pp 66–75

  29. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H-Y. (2001) Learning to Detect a Salient Object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Google Scholar 

  30. Liang Z, Chi Z, Fu H, Feng D (2012) Salient object detection using content-sensitive hypergraph representation and partitioning. Pattern Recogn 45(11):3886–3901

    Article  Google Scholar 

  31. Ramík DM, Sabourin C, Madani K (2011) Hybrid salient object extraction approach with automatic estimation of visual attention scale. In: Proceedings of 7th International Conference on Signal Image Technology & Internet-Based Systems. Dijon, France, pp 438–445

  32. Ramík DM, Sabourin C, Moreno R, Madani K (2014) A Machine Learning based Intelligent Vision System for Autonomous Object Detection and Recognition. J Appl Intelligence 40(2):358–375

    Article  Google Scholar 

  33. Moreno R, Ramík DM, Graña M, Madani K (2012) Image segmentation on the spherical coordinate representation of the RGB color space. IET Image Process 6(9):1275–1283

    Article  MathSciNet  Google Scholar 

  34. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H-Y (2011) Learning to detect a salient object. Proc Comput Vision Pattern Recogn 33:353–367

    Google Scholar 

  35. Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207

    Article  Google Scholar 

  36. Liu T, Sun J, Zheng N, Shum H-Y (2007) Learning to detect a salient object. In: Proceedings IEEE ICCV, pp 1–8

  37. Holzbach A, Cheng G (2014) A Scalable and efficient method for salient region detection using sampled template collation. In: Proceedings IEEE ICIP, pp 1110–1114

  38. Koehler K, Guo F, Zhang S, Eckstein MP (2014) What do saliency models predict. J Vis 14(3):1–27

    Article  Google Scholar 

  39. Navalpakkam V, Itti L (2006) An integrated model of top-down and bottom-up attention for optimizing detection speed. Proc IEEE CVPR II:2049–2056

    Google Scholar 

  40. Kadir T, Brady M (2001) Saliency, scale and image description. J Vis 45(2):83–105

    MATH  Google Scholar 

  41. Kienzle W, Franz MO, Schölkopf B, Wchmann FA (2009) Center-surround patterns emerge as optimal predictors for human saccade targets. J Vis 9:1–15

    Article  Google Scholar 

  42. Rajashekar U, Vander Linde I, Bovik AC, Cormack LK (2008) GAFFE: a gaze- attentive fixation finding engine. IEEE Trans Image Process 17(4):564–573

    Article  MathSciNet  Google Scholar 

  43. Hayhoe M, Ballard D (2005) Eye movements in natural behavior. Trends Cogn Sci 9:188–194

    Article  Google Scholar 

  44. Triesch J, Ballard DH, Hayhoe MM, Sullivan BT (2003) What you see is what you need. J Vis 3:86–94

    Article  Google Scholar 

  45. Zhang J, Sclaroff S (2013) Saliency detection: a boolean map approach. In: Proceedings of IEEE ICCV, pp 153–160

  46. Karray FO, De Silva CW (2004) Soft computing and intelligent systems design: theory, tools and applications. Addison-Wesley Longman, Harlow. ISBN 9780321116178

    Google Scholar 

  47. Riche N, Duvinage M, Mancas M, Gosselin B, Dutoit T (2013) Saliency and human fixations: state-of-the-art and study of comparison metrics. In: Procssdings of IEEE ICCV, pp 1153–1160

  48. Judd T, Ehinger K, Durand F, Torralba A (2009) Learning to predict where humans look. In: Proceedings of IEEE ICCV, pp 2106–2113

  49. Borji A, Tavakoli HR, Sihite DN, Itti L (2013) Analysis of scores, datasets, and models in visual saliency prediction. In: Proceedings of IEEE ICCV, pp 921–928

  50. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  51. Contreras-Reyes JE, Arellano-Valle RB (2012) Küllback-Leibler divergence measure for multivariate skew-normal distributions. Entropy 14(9):1606–1626

    Article  MathSciNet  MATH  Google Scholar 

  52. Judd T, Durand F, Torralba A (2012) A benchmark of computational models of saliency to predict human fixations, MIT Technical Report. http://saliency.mit.edu/

  53. Tatler BW (2007) The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor bases and image feature distributions. J V 14:1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurosh Madani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madani, K., Kachurka, V., Sabourin, C. et al. A human-like visual-attention-based artificial vision system for wildland firefighting assistance. Appl Intell 48, 2157–2179 (2018). https://doi.org/10.1007/s10489-017-1053-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1053-6

Keywords

Navigation