Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Fuzzy grey cognitive maps and nonlinear Hebbian learning in process control

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Fuzzy Grey Cognitive Maps (FGCM) is an innovative Grey System theory-based FCM extension. Grey systems have become a very effective theory for solving problems within environments with high uncertainty, under discrete small and incomplete data sets. In this study, the method of FGCMs and a proposed Hebbian-based learning algorithm for FGCMs were applied to a known reference chemical process problem, concerning a control process in chemical industry with two tanks, three valves, one heating element and two thermometers for each tank. The proposed mathematical formulation of FGCMs and the implementation of the NHL algorithm were analyzed and then successfully applied keeping the main constraints of the problem. A number of numerical experiments were conducted to validate the approach and verify the effectiveness. Also, the produced results were analyzed and compared with the results previously reported in the literature from the implementation of the FCMs and Nonlinear Hebbian learning algorithm. The advantages of FGCMs over conventional FCMs are their capabilities (i) to produce a length and greyness estimation at the outputs; the output greyness can be considered as an additional indicator of the quality of a decision, and (ii) to succeed desired behavior for the process system for every set of initial states, with and without Hebbian learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alcala R, Benitez JM, Casillas J, Cordon O, Perez R (2003) Fuzzy control of HVAC systems optimized by genetic algorithms. Appl Intell 18(2):155–177

    Article  MATH  Google Scholar 

  2. Boutalis Y, Kottas T, Christodoulou M (2009) Adaptive estimation of fuzzy cognitive maps with proven stability and parameter convergence. IEEE Trans Fuzzy Syst 17(4):874–889

    Article  Google Scholar 

  3. Bueno S, Salmeron JL (2009) Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst Appl 36:5221–5229

    Article  Google Scholar 

  4. Deng JL (1989) Introduction to grey system theory. J. Grey Syst. 1:1–24

    MATH  Google Scholar 

  5. Froelich W, Papageorgiou EI, Samarinas M, Skriapas K (2012) Application of evolutionary FCMs to the long-term prediction of prostate cancer. Appl Soft Comput. doi:10.1016/j.asoc.2012.02.005

    Google Scholar 

  6. Fukami S, Mizumoto M, Tanaka K (1980) Some control considerations of fuzzy conditional inference. Fuzzy Sets Syst 4:243–273

    Article  MATH  MathSciNet  Google Scholar 

  7. Kosko B (1986) Fuzzy cognitive maps. Int J Man-Mach Stud 24:65–75

    Article  MATH  Google Scholar 

  8. Kosko B (1996) Fuzzy engineering. Prentice-Hall, New York

    Google Scholar 

  9. Li G, Yamaguchia D, Nagaib M (2007) A grey-based decision-making approach to the supplier selection problem. Math Comput Model 46:573–581

    Article  Google Scholar 

  10. Liu S, Lin Y (2006) Grey information. Springer, Berlin

    Google Scholar 

  11. Liu YJ, Tong SC, Wang W (2009) Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems. Fuzzy Sets Syst 160(19):2727–2754

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu YJ, Wang W, Tong SC, Liu YS (2010) Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans Syst Man Cybern, Part A, Syst Hum 40(1):170–184

    Article  Google Scholar 

  13. Liu YJ, Tong SC, Chen CLP (2013) Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics. IEEE Trans Fuzzy Syst 21(2):275–288

    Article  Google Scholar 

  14. Mago VK, Mehta R, Woolrych R, Papageorgiou EI (2012) Supporting meningitis diagnosis amongst infants and children through the use of fuzzy cognitive mapping. BMC Med Inform Decis Mak 12(98)

  15. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans Model Comput Simul 8(1):3–30

    Article  MATH  Google Scholar 

  16. Mazinan AH, Sadati N (2010) Fuzzy predictive control based multiple models strategy for a tubular heat exchanger system. Appl Intell 33(3):247–263

    Article  Google Scholar 

  17. Mazinan AH, Sadati N (2011) An intelligent multiple models based predictive control scheme with its application to industrial tubular heat exchanger system. Appl Intell 34(1):127–140

    Article  Google Scholar 

  18. Mazinan AH, Sheikhan M (2012) On the practice of artificial intelligence based predictive control scheme: a case study. Appl Intell 36(1):178–189

    Article  Google Scholar 

  19. Mendonca M, Arruda LVR, Neves F Jr. (2012) Autonomous navigation system using event driven-fuzzy cognitive maps. Appl Intell 37(2):175–188

    Article  Google Scholar 

  20. Papageorgiou EI, Iakovidis D (2013) Intuitionistic fuzzy cognitive maps. IEEE Trans Fuzzy Syst 21(2):342–354

    Article  Google Scholar 

  21. Papageorgiou EI, Groumpos PP (2005) A weight adaptation method for fine-tuning fuzzy cognitive map causal links. Soft Comput J 9:846–857

    Article  MATH  Google Scholar 

  22. Papageorgiou EI, Salmeron JL (2013) A review of fuzzy cognitive map research at the last decade. IEEE Trans Fuzzy Syst 21(1):66–79

    Article  Google Scholar 

  23. Papageorgiou EI, Salmeron JL (2012) Learning fuzzy grey cognitive maps using nonlinear hebbian-based approach. Int J Approx Reason 53(1):54–65

    Article  MATH  MathSciNet  Google Scholar 

  24. Papageorgiou EI, Stylios CD, Groumpos PP (2004) Active hebbian learning to train fuzzy cognitive maps. Int J Approx Reason 37(3):219–249

    Article  MATH  MathSciNet  Google Scholar 

  25. Papageorgiou EI, Stylos C, Groumpos PP (2006) Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links. Int J Hum-Comput Stud 64:727–743

    Article  Google Scholar 

  26. Salmeron JL (2010) Modelling grey uncertainty with fuzzy grey cognitive maps. Expert Syst Appl 37(12):7581–7588

    Article  Google Scholar 

  27. Salmeron JL (2012) Fuzzy cognitive maps for artificial emotions forecasting. Appl Soft Comput 12(12):3704–3710

    Article  Google Scholar 

  28. Salmeron JL, Gutierrez E (2012) Fuzzy grey cognitive maps in reliability engineering. Appl Soft Comput 12(12):3818–3824

    Article  Google Scholar 

  29. Salmeron JL, Lopez C (2012) Forecasting risk impact on ERP maintenance with augmented fuzzy cognitive maps. IEEE Trans Softw Eng 38(2):439–452

    Article  Google Scholar 

  30. Salmeron JL, Papageorgiou EI (2012) A fuzzy grey cognitive maps-based decision support system for radiotherapy treatment planning. Appl Soft Comput 30:151–160

    Google Scholar 

  31. Salmeron JL, Vidal R, Mena A (2012) Ranking fuzzy cognitive maps based scenarios with TOPSIS. Expert Syst Appl 39(3):2443–2450

    Article  Google Scholar 

  32. Stylios C, Georgopoulos V, Groumpos PP (1999) Fuzzy cognitive map approach to process control systems. J Adv Comput Intell 3(5):409–417

    Google Scholar 

  33. Stylios C, Groumpos PP (1999) Fuzzy cognitive maps: a model for intelligent supervisory control systems. Comput Ind 39(3):229–238

    Article  Google Scholar 

  34. Stylos C, Goumpos PP (2000) Fuzzy cognitive maps in modeling supervisory control systems. J Intell Fuzzy Syst 8(2):83–98

    Google Scholar 

  35. Tong SC, He XL, Zhang HG (2009) A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans Fuzzy Syst 17(5):1059–1069

    Article  Google Scholar 

  36. Tong SC, Li CY, Li YM (2009) Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst 160(19):2755–2775

    Article  MATH  MathSciNet  Google Scholar 

  37. Tong SC, Liu CL, Li YM (2010) Fuzzy adaptive decentralized control for large-scale nonlinear systems with dynamical uncertainties. IEEE Trans Fuzzy Syst 18(5):845–861

    Article  Google Scholar 

  38. Tong SC, Li YM, Feng G, Li TS (2011) Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans Syst Man Cybern, Part B, Cybern 41(4):83–98

    Google Scholar 

  39. Tong SC, Li Y, Li YM, Liu YJ (2011) Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans Syst Man Cybern, Part B, Cybern 41(6):1693–1704

    Article  MathSciNet  Google Scholar 

  40. Wilson EL, Karr CL, Bennett JP (2004) An adaptive, intelligent control system for slag foaming. Appl Intell 20(2):165–177

    Article  MATH  Google Scholar 

  41. Wu SX, Li MQ, Cail LP, Liu SF (2005) A comparative study of some uncertain information theories. In: Proceedings of the international conference on control and automation, pp 1114–1119

    Google Scholar 

  42. Xirogiannis G, Glykas M (2007) Intelligent modeling of e-business maturity. Expert Syst Appl 32:687–702

    Article  Google Scholar 

  43. Yamaguchi D, Li G, Chen L, Nagai M (2007) Reviewing crisp, fuzzy, grey and rough mathematical models. In: Proceedings of the IEEE international conference on grey systems and intelligent services, pp 547–552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose L. Salmeron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmeron, J.L., Papageorgiou, E.I. Fuzzy grey cognitive maps and nonlinear Hebbian learning in process control. Appl Intell 41, 223–234 (2014). https://doi.org/10.1007/s10489-013-0511-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0511-z

Keywords

Navigation