Abstract
This paper provides a unifying framework for a range of categorical constructions characterised by universal mapping properties, within the realm of compactifications of discrete structures. Some classic examples fit within this broad picture: the Bohr compactification of an abelian group via Pontryagin duality, the zero-dimensional Bohr compactification of a semilattice, and the Nachbin order-compactification of an ordered set. The notion of a natural extension functor is extended to suitable categories of structures and such a functor is shown to yield a reflection into an associated category of topological structures. Our principal results address reconciliation of the natural extension with the Bohr compactification or its zero-dimensional variant. In certain cases the natural extension functor and a Bohr compactification functor are the same; in others the functors have different codomains but may agree on all objects. Coincidence in the stronger sense occurs in the zero-dimensional setting precisely when the domain is a category of structures whose associated topological prevariety is standard. It occurs, in the weaker sense only, for the class of ordered sets and, as we show, also for infinitely many classes of ordered structures. Coincidence results aid understanding of Bohr-type compactifications, which are defined abstractly. Ideas from natural duality theory lead to an explicit description of the natural extension which is particularly amenable for any prevariety of algebras with a finite, dualisable, generator. Examples of such classes—often varieties—are plentiful and varied, and in many cases the associated topological prevariety is standard.
Similar content being viewed by others
References
Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The Joy of Cats. Wiley, New York (1990). Republished in: Reprints in Theory and Applications of Categories, no. 17 (2006), pp. 1–507. Available at http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf
Banaschewski, B.: Remarks on Dual Adjointness. In: Nordwestdeutsches Kategorienseminar, Tagung, Bremen, 1976. Math.-Arbeitspapiere 7, Teil A: Math. Forschungspapiere, pp 3–10. University of Bremen, Bremen (1976)
Begum, S.N., Clark, D.M., Davey, B.A., Perkal, N.: Axiomatisation modulo Priestley, (preprint)
Bergman, G.M.: An Invitation to General Algebra and Universal Constructions. Henry Helson, Berkeley (1998). Available at http://math.berkeley.edu/~gbergman/245
Bezhanishvili, G., Gehrke, M., Mines, R., Morandi, P.J.: Profinite completions and canonical extensions of Heyting algebras. Order 23, 143–161 (2006)
Bezhanishvili, G., Mines, R., Morandi, P.J.: The Priestley separation axiom for scattered spaces. Order 19, 1–10 (2002)
Bezhanishvili, G., Morandi, P.J.: Priestley rings and Priestley order-compactifications. Order 28, 399–413 (2011)
Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge University Press, Cambridge (1998)
Clark, D.M., Davey, B.A., Freese, R.S., Jackson, M.: Standard topological algebras: syntactic and principal congruences and profiniteness. Algebra Universalis 52, 343–376 (2004)
Clark, D.M., Davey, B.A., Haviar, M., Pitkethly, J.G., Talukder, M.R.: Standard topological quasi-varieties. Houston J. Math. 29, 859–887 (2003)
Clark, D.M., Davey, B.A., Jackson, M., Maróti, M., McKenzie, R.N.: Principal and syntactic congruences in congruence-distributive and congruence-permutable varieties. J. Aust. Math. Soc. 85, 59–74 (2008)
Clark, D.M., Davey, B.A., Jackson, M., Pitkethly, J.G.: The axiomatizability of topological prevarieties. Adv. Math. 218, 1604–1653 (2008)
Clark, D.M., Davey, B.A., Pitkethly, J.G., Rifqui, D.L.: Flat unars: the primal, the semi-primal and the dualisable. Algebra Universalis 63, 303–329 (2010)
Clark, D.M., Idziak, P.M., Sabourin, L.R., Szabó, C., Willard, R.: Natural dualities for quasivarieties generated by a finite commutative ring. Algebra Universalis 46, 285–320 (2001)
Davey, B.A.: Topological duality for prevarieties of universal algebras. In: Rota, G.-C. (ed.) Studies in Foundations and Combinatorics, Adv. in Math. Suppl. Stud. 1, pp 61–99. Academic Press, New York (1978)
Davey, B.A.: Natural dualities for structures. Acta Univ. M. Belii Ser. Math. 13, 3–28 (2006). Available at http://actamath.savbb.sk/pdf/acta1301.pdf
Davey, B.A., Gouveia, M.J., Haviar, M., Priestley, H.A.: Natural extensions and profinite completions of algebras. Algebra Universalis 66, 205–241 (2011)
Davey, B.A., Haviar, M., Priestley, H.A.: Boolean topological distributive lattices and canonical extensions. Appl. Categ. Structures 15, 225–241 (2007)
Davey, B.A., Haviar, M., Priestley, H.A.: Natural dualities in partnership. Appl. Categ. Structures 20, 583–602 (2012)
Davey, B.A., Haviar, M., Priestley, H.A.: Piggyback dualities revisited. Algebra Universalis. arXiv:1501.02512 [math.RA]
Davey, B.A., Jackson, M., Pitkethly, J.G., Talukder, M.R.: Natural dualities for semilattice-based algebras. Algebra Universalis 57, 463–490 (2007)
Davey, B.A., Nguyen, L., Pitkethly, J.G.: Counting relations on Ockham algebras. Algebra Universalis 74, 35–63 (2015)
Davey, B.A., Priestley, H.A.: Generalized piggyback dualities and applications to Ockham algebras. Houston J. Math. 13, 151–197 (1987)
Davey, B.A., Priestley, H.A.: Canonical extensions and discrete dualities for finitely generated varieties of lattice-based algebras. Stud. Logica. 100, 137–161 (2012)
Davey, B.A., Talukder, M.R.: Dual categories for endodualisable Heyting algebras: optimization and axiomatization. Algebra Universalis 53, 331–355 (2005)
Dikranjan, D., Ferrer, M.V., Hernández, S.: Dualities in topological groups. Sci. Math. Jpn. 72, 197–235 (2010)
Engelking, R.: General Topology. PWN—Polish Scientific Publishers, Warsaw (1977)
Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press (2003)
Goldberg, M.S.: Distributive Ockham algebras: free algebras and injectivity. Bull. Austral. Math. Soc. 24, 161–203 (1981)
Gouveia, M.J., Priestley, H.A.: Profinite completions and canonical extensions of semilattice reducts of distributive lattices. Houston J. Math. 39, 1117–1136 (2013)
Gouveia, M.J., Priestley, H.A.: Profinite completions of semilattices and canonical extensions of semilattices and lattices. Order 31, 189–216 (2014)
Hart, J.E., Kunen, K.: Bohr compactifications of discrete structures. Fund. Math. 160, 101–151 (1999)
Hofmann, K.H., Mislove, M., Stralka, A.: The Pontryagin duality of compact O-dimensional semilattices and its applications. Lecture Notes in Mathematics 396, Springer (1974)
Holm, P.: On the Bohr compactification. Math. Annalen 156, 34–46 (1964)
Jackson, M.: Residual bounds for compact totally disconnected algebras. Houston J. Math. 34, 33–67 (2008)
Jackson, M.: Natural dualities, nilpotence and projective planes. Algebra Universalis 74, 65–85 (2015)
Johnstone, P.T.: Stone Spaces. Cambridge University Press (1980)
Johansen, S.M.: Natural dualities for three classes of relational structures. Algebra Universalis 63, 149–170 (2010)
Koppelberg, S.: Handbook of Boolean Algebras. In: Monk, J.D., Bonnet, R. (eds.) , vol. 1. North-Holland Publishing Co., Amsterdam (1989)
Nachbin, L.: Topology and Order. Robert E. Krieger Publishing Co., Huntington (1976)
Nailana, K.R.: (Strongly) Zero-dimensional partially ordered spaces. Papers in honour of Bernhard Banaschewski (Cape Town, 1996), pp. 445–456. Kluwer, Dordrecht (2000) reprint Springer (2010)
Numakura, K.: Theorems on compact totally disconnected semigroups and lattices. Proc. Amer. Math. Soc. 8, 623–626 (1957)
Pitkethly, J.G., Davey, B.A.: Dualisability: Unary algebras and beyond. Advances in Mathematics 9. Springer (2005)
Pontryagin, L.S.: Topological Groups, 2nd edn. Gordon & Breach, New York (1966)
Quackenbush, R., Szabó, C.: Strong duality for metacyclic groups. J. Aust. Math. Soc. 73, 377–392 (2002)
Semadeni, Z.: Banach Spaces of Continuous Functions. PWN—Polish Scientific Publishers, Warsaw (1971)
Stralka, A.: A partially ordered space which is not a Priestley space. Semigroup Forum 20, 293–297 (1980)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first author wishes to thank the Research Institute of M. Bel University in Banská Bystrica for its hospitality while working on this paper. The second author acknowledges support from Slovak grants APVV-0223-10, Mobility-ITMS 26110230082 and VEGA 1/0212/13.
Rights and permissions
About this article
Cite this article
Davey, B.A., Haviar, M. & Priestley, H.A. Bohr Compactifications of Algebras and Structures. Appl Categor Struct 25, 403–430 (2017). https://doi.org/10.1007/s10485-016-9436-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-016-9436-0
Keywords
- Bohr compactification
- Natural extension
- Natural duality
- Stone–Čech compactification
- Nachbin order-compactification
- Standard topological prevariety