Abstract
We make a definition of ω-precategory which should underlie any definition of weak ω-category. We make a precise definition of pseudo-invertible cells in this setting. We show that in an ω-precategory with all weak duals, every cell is pseudo-invertible. We deduce that in any “sensible” theory of ω-categories, an ω-category with all weak duals is an ω-groupoid. We discuss various examples and open questions involving higher-dimensional tangles and cobordisms.
Similar content being viewed by others
References
Baez, J., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995)
Baez, J., Dolan, J.: Higher-dimensional algebra III: n-categories and the algebra of opetopes. Adv. Math. 135(2), 145–206 (1998)
Baez, J., Langford, L.: Higher-dimensional algebra IV: 2-tangles. Adv. Math. 180, 705–764 (2003)
Cheng, E., Gurski, N.: Towards an n-category of cobordisms. In: CT06, White Point, June (2006)
Penon, J.: Approche polygraphique des ∞-catégories non strictes. Cahiers Topologie Géom. Différentielle Catég. XL(1), 31–80 (1999)
Shum, M.C.: Tortile tensor categories. Ph.D. thesis, Macquarie University, New South Wales (1989)
Simpson, C.: A closed model structure for n-categories, internal Hom, n-stacks and generalized Seifert–Van Kampen. (Preprint alg-geom/9704006)
Street, R.: The algebra of oriented simplexes. J. Pure Appl. Algebra 49(3), 283–335 (1987)
Tamsamani, Z.: Sur des notions de n-catégorie et n-groupoide non-strictes via des ensembles multi-simpliciaux. K-theory 16(1), 51–99 (1999)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cheng, E. An ω-category with all Duals is an ω-groupoid. Appl Categor Struct 15, 439–453 (2007). https://doi.org/10.1007/s10485-007-9081-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-007-9081-8