Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Monocoreflections of Completely Regular Frames

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Functorial nearness structures and coreflections mesh tightly together. After presenting a new construction closely related to the completion of a nearness frame, this article shows a bijection exists between monocoreflections and strong, locally fine, completion stable, functorial nearness structures. This bijection gives a simple description of the monocoreflective subcategory generated by any class of frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamek, J., Herrlich, H., Strecher, G.: Abstract and Concrete Categories: The Joy of Cats. Wiley, New York (1990) (Available online at katmat.math.uni-bremen.de/acc; distributed under the GNU public license)

  2. Banaschewski, B.: Projective frames: a general view. Cahiers Topologie Géom. Differentielle Catég. 46, 301–312 (2005)

    MATH  MathSciNet  Google Scholar 

  3. Banaschewski, B.: Uniform completion in pointfree topology. In: Rodabaugh, S.E., Klement, E.P. (eds.) Topological and Algebraic Structures in Fuzzy Sets, pp. 19–56. Kluwer, Boston, MA (2003)

    Google Scholar 

  4. Banaschewski, B., Mulvey, C.: The Stone Čech compactification of frames. Houston J. Math. 6, 301–312 (1980)

    MATH  MathSciNet  Google Scholar 

  5. Banaschewski, B., Pultr, A.: Samuel compactification and completion of uniform frames. Math. Proc. Cambridge Philos. Soc. 108, 63–78 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Banaschewski, B., Pultr, A.: Paracompactness revisited. Appl. Categ. Structures 1, 181–190 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Banaschewski, B., Pultr, A.: Cauchy points of uniform and nearness frames. Quaestiones Math. 19, 101–127 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Banaschewski, B., Pultr, A.: On Cauchy homomorphisms of nearness frames. Math. Nachr. 183, 5–18 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Banaschewski, B., Hong, S.S., Pultr, A.: On the completion of nearness frames. Quaestiones Math. 21, 19–37 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dowker, C.H., Strauss, D.: Sums in the category of frames. Houston J. Math. 3, 7–15 (1977)

    MathSciNet  Google Scholar 

  11. Dube, T.: Paracompact and locally fine nearness frames. Topology Appl. 62(3), 247–253 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ginsberg, S., Isbell, J.R.: Some operators on uniform spaces. Trans. Amer. Math. Soc. 93, 145–168 (1959)

    Article  MathSciNet  Google Scholar 

  13. Herrlich, H., Strecker, G.: Category Theory. Heldermann-Verlag, Berlin (1979)

    MATH  Google Scholar 

  14. Hohti, A.: On the locally fine construction in uniform spaces, locales and formal spaces. Available at arXiv:math.GN/0208252 (2002)

  15. Hohti, A., Husek, M., Pelant, J.: The locally fine coreflection and normal covers in the products of partition-complete spaces. Topology Appl. 126(1,2), 187–205 (2002) (Available at arXiv:GN0208182)

    Google Scholar 

  16. Isbell, J.: Uniform Spaces. American Mathematical Society, Providence, RI (1964)

    MATH  Google Scholar 

  17. Isbell, J.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)

    MATH  MathSciNet  Google Scholar 

  18. Johnstone, P.: Stone Spaces. In: Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge UK (1982)

    Google Scholar 

  19. Johnstone, P.: Sketches of an Elephant: A Topos Theory Compendium (2 volumes). Clarenden, Oxford (2002)

  20. Joyal, A., Tierney, M.: An extension of the Galois theory of Grothendieck. In: Memoirs of the American Mathematical Society, vol. 51, no. 309. American Mathematical Society, Providence, RI (1984)

    Google Scholar 

  21. Kriz, I.: A direct description of uniform completion in locales and a characterization of LT-groups. Cahiers Topologie Géom. Differentielle Catég. 27, 19–34 (1986)

    MathSciNet  MATH  Google Scholar 

  22. MacLane, S.: Categories for the working mathematician. In: Graduate Texts in Mathematics, vol. 5. Springer, Berlin Heidelberg New York (1971)

    Google Scholar 

  23. Marcus, N.: E-compactness in pointfree topology. Appl. Categ. Structures 11, 125–133 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Paseka, I.: Boolean algebras and ultracompactness [ultraparacompactness]. Cahiers Topologie Géom. Differentielle Catég. 33(1), 15–20 (1992)

    MATH  MathSciNet  Google Scholar 

  25. Pelant, J.: Locally fine uniformities and normal covers. Czechoslovak Math. J. 37(112), 181–187 (1987)

    MATH  MathSciNet  Google Scholar 

  26. Picado, J., Pultr, A., Tozzi, A.: Locales. In: Pedicchio, M.C., Tholen, W. (eds) Categorical Foundations: Special Topics in Order, Topology, Algebra and Sheaf Theory. Cambridge University Press, Cambridge, UK (2004)

    Google Scholar 

  27. Plewe, T.: Sublocale lattices. Category theory 1999 (Coimbra). J. Pure Appl. Algebra 168(2–3), 309–326 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pultr, A.: Frames. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 3, pp. 791–857. Elsevier Science, Amsterdam, The Netherlands (2003)

    Google Scholar 

  29. Schlitt, G.: ℕ-compact frames and applications, Ph.D. thesis. McMaster University (1990)

  30. Schlitt, G.: ℕ-compact frames. Comment. Math. Univ. Carolin. 32(1), 173–187 (1991)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Richard Zenk.

Additional information

To Bernhard Banaschewski on the occasion of his eightieth birthday.

The first draft of this paper paper was written while the author was employeed at Vanderbilt University; he thanks his collegues there.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenk, E.R. Monocoreflections of Completely Regular Frames. Appl Categor Struct 15, 209–222 (2007). https://doi.org/10.1007/s10485-007-9065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-007-9065-8

Key words

Mathematics Subject Classifications (2000)

Navigation