Article PDF
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Basu, S., Pollack, R., Roy, M.-F.: Existential theory of the reals, volume 10 of algorithms and computation in mathematics. Springer, Berlin (2006)
Berman, L.: The complexity of logical theories. Theor. Comput. Sci. 11, 71–77 (1980)
Bialas, W.F., Karwan, M.H.: Two-level linear programming. Manag. Sci. 30 (8), 1004–1020 (1984)
Bradley, A.R., Manna, Z.: The calculus of computation - decision procedures with applications to verification, first edition. Springer, Berlin (2007)
Brown, C.W.: QEPCAD B: A Program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)
Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995)
Canny, J.: Some algebraic and geometric computations in PSPACE. Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, 460–467 (1988)
Choi, S., Agrawala, A.: Dynamic dispatching of cyclic real-time tasks with relative timing constraints. Real-Time Syst. 19(1), 5–40 (2000)
Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)
Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1-2), 29–35 (1988)
Dolzmann, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997)
Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theorem proving in real geometry. J. Autom. Reason. 21(3), 357–380 (1998)
Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In: Matzat, B.H., et al. (eds.) Algorithmic Algebra and Number Theory, pages 221–248. Springer (1998)
Eirinakis, P., Ruggieri, S., Subramani, K., Wojciechowski, P.: On quantified linear implications. Ann. Math. Artif. Intell. 71(4), 301–325 (2014)
Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4(1), 69–76 (1975)
Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-time tasks. IEEE Trans. Comput. 44(3), 471–479 (1995)
Hall, R.J.: Specification, validation, and synthesis of email agent controllers: A case study in function rich reactive system design. Autom. Softw. Eng. 9(3), 233–261 (2002)
Harel, D.: A grand challenge for computing: Towards full reactive modeling of a multi-cellular animal. Verification, Model Checking, Abstr. Interpretation 2937, 39–60 (2004)
Kam, N., Cohen, I.R., Harel, D.: The immune system as a reactive system: modeling t cell activation with statecharts Proceedings of the 2001 IEEE Symposia on Human-Centric Computing Languages and Environments, pp 15–22 (2001)
Khachiyan, L.G.: A polynomial algorithm in linear programming. Doklady Akademiia Nauk SSSR 224, 1093–1096 (1979). English Translation: Soviet Mathematics Doklady, Volume 20, pp. 1093–1096
Koo, T.J., Sinopoli, B., Sangiovanni-Vincentelli, A., Sastry, S.: A formal approach to reactive system design: unmanned aerial vehicle flight management system design example Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design, pp 522–527 (1999)
Christos, H.: Papadimitriou computational complexity Addison-Wesley (1994)
Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive systems Proceedings of the 2000 ACM Conference on Computer Communications Security, pp 245–254 (2000)
Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application to secure message transmission Proceedings of the 2001 IEEE Symposium on Security and Privacy, pp 184–200 (2001)
Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM Trans. Comput. Log. 7(4), 723–748 (2006)
Ratschan, S.: RSOLVER. http://rsolver.sourceforge.net (2013)
Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy A compendium. SIGACT News 33(3), 32–49 (2002)
Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy Part II. SIGACT News 33(4), 22–36 (2002)
Schrijver, A.: Theory of linear and integer programming. John Wiley and Sons, New York (1987)
Shor, P.W.: Stretchability of pseudolines is NP-hard. DIMACS 4, 531–534 (1991)
Sontag, E.D.: Real addition and the polynomial hierarchy. Inf. Process. Lett. 20 (3), 115–120 (1985)
Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3, 1–22 (1977)
Subramani, K.: On a decision procedure for quantified linear programs. Ann. Math. Artif. Intell. 51(1), 55–77 (2007)
Tarski, A.: A decision method for elementary algebra and geometry. Technical report r-109 rand corporation (1948)
Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput. 4(1-2), 3–27 (1988)
Author information
Authors and Affiliations
Corresponding author
Additional information
The online version of the original articles can be found at http://dx.doi.org/10.1007/s10472-016-9525-7.
Rights and permissions
About this article
Cite this article
Wojciechowski, P., Eirinakis, P. & Subramani, K. Erratum to: Analyzing restricted fragments of the theory of linear arithmetic. Ann Math Artif Intell 79, 371–392 (2017). https://doi.org/10.1007/s10472-017-9537-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-017-9537-y