Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Lossless grounded FDNR simulator and its applications using OTRA

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new grounded positive lossless frequency dependent negative resistance (FDNR) simulator and two of its applications are presented. The proposed FDNR uses single OTRA and requires five number of passive components; two resistances and three capacitances. The workability of the proposed simulator is demonstrated through the realization of a single resistance controlled oscillator (SRCO) and a fifth order elliptic filter. A detail non-ideality analysis is also done for both FDNR and SRCO. In addition the sensitivity, non-ideality effect and frequency stability analysis of SRCO have been presented. Monte Carlo simulation of the SRCO output has been given and discussed. Moreover, the layout of OTRA, FDNR and SRCO and their post layout simulations in 180 nm are given. PSPICE simulation and experimental results are included to verify theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC design: The current-mode approach. London: Peter Peregrinus.

    Google Scholar 

  2. Thanachayanont, A., & Payne, A. (2000). CMOS floating active inductor and its application to band pass filter and oscillator design. IEE Proceedings Circuits Devices Systems, 147(1), 42–48.

    Article  Google Scholar 

  3. Salama, K. N., & Soliman, A. M. (2000). Novel oscillators using the operational transresistance amplifier. Microelectronics Journal, 31(1), 39–47.

    Article  Google Scholar 

  4. Cam, U., Kacar, F., Cicekoglu, O., Kuntman, H., & Kuntman, A. (2004). Novel two OTRA-based grounded immitance simulator topologies. Analog Integrated Circuits and Signal Processing, 39(2), 169–175.

    Article  Google Scholar 

  5. Pandey, R., Pandey, N., Paul, S. K., Singh, A., Sriram, B., & Trivedi, K. (2011). New topologies of lossless grounded inductor using OTRA. Journal of Electrical and Computer Engineering, Article ID 175130, 1–6.

  6. Pandey, R., Pandey, N., Paul, S. K., Singh, A., Sriram, B., & Trivedi, K. (2014). Novel grounded inductance simulator using single OTRA. International Journal of Circuit Theory and Applications, 42(10), 1069–1079.

    Article  Google Scholar 

  7. Gupta, A., Senani, R., Bhaskar, D. R., & Singh, A. K. (2013). New OTRA-based generalized impedance simulator. ISRN Electronics, Article ID 907597, 1–10.

  8. Gupta, A., Senani, R., Bhaskar, D. R., & Singh, A. K. (2012). OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits, Systems, and Signal Processing, 31(2), 489–499.

    Article  MathSciNet  Google Scholar 

  9. Bruton, L. T. (1969). Network transfer functions using the concept of frequency dependent negative resistance. IEEE Transactions on Circuit Theory, 16, 406–408.

    Article  Google Scholar 

  10. Chen, J. J., Tsao, H. W., & Chen, C. C. (1992). Operational transresistance amplifier using CMOS technology. Electronics Letters, 28(22), 2087–2088.

    Article  Google Scholar 

  11. Chen, J. J., Tsao, H. W., Liu, S. I., & Chiu, W. (1995). Parasitic-capacitance-insensitive current-mode filters using operational transresistance amplifiers. IEE Proceedings, Circuits Devices Systems, 142(3), 186–192.

    Article  Google Scholar 

  12. Salama, K. N., & Soliman, A. M. (1999). CMOS operational transresistance amplifier for analog signal processing. Microelectronics Journal, 30(3), 235–245.

    Article  Google Scholar 

  13. Mostafa, H., & Soliman, A. M. (2006). A Modified CMOS realization of the operational transresistance amplifier (OTRA). Frequenz, 60(3–4), 70–76.

    Google Scholar 

  14. Hou, C. L., Chien, H. C., & Lo, Y. K. (2005). Squarewave generators employing OTRAs. IEE Proceedings-Circuits, Devices and Systems, 152(6), 718–722.

    Article  Google Scholar 

  15. Analog Devices Inc. (1999). Linear products data book. Norwood, MA: Analog Devices Inc.

    Google Scholar 

  16. Baker, R. J., Li, H. W., & Boyce, D. E. (1998). CMOS circuit design, layout and simulation (Chapter 7). New York: IEEE Press.

    Google Scholar 

  17. Herencsar, N., Cicekoglu, O., Sotner, R., Koton, J., & Vrba, K. (2013). New resistorless tunable voltage mode universal filter using single VDIBA. Analog Integrated Circuits and Signal Processing, 76, 251–260.

    Article  Google Scholar 

  18. Metin, B., & Pal, K. (2009). Cascadable allpass filter with a single DO-CCII and a grounded capacitor. Analog Integrated Circuits and Signal Processing, 61, 259–263.

    Article  Google Scholar 

  19. Ibrahim, M. A., Kuntman, H., & Cicekoglu, O. (2003). First order all-pass filter canonical in the number of resistors and capacitors employing a single DDCC. Circuits, Systems, and Signal Processing, 22(5), 525–536.

    Article  MATH  Google Scholar 

  20. Genin, R. (1975). A sine wave generator using a frequency-dependent-negative-conductance. IEEE Proceeding Letters, 63(11), 1611–1612.

    Article  Google Scholar 

  21. Senani, R. (1982). A class of single-element-controlled sinusoidal oscillators. International Journal of Electronics and Communications (AEU), 36(10), 405–408.

    Google Scholar 

  22. Wang, Z. (1990). 2-MOSFET transresistor with extremely low distortion for output reaching supply voltages. Electronics Letters, 26(13), 951–952.

    Article  Google Scholar 

  23. Ozoguz, S., & Toker, A. (2002). Tunable ladder-type realization of current-mode elliptic filters. International Journal of Electronics and Communications, 56(3), 193–199.

    Article  Google Scholar 

  24. Bhasker, D. R., & Senani, R. (2006). New CFOA-based single-element-controlled sinusoidal oscillators. IEEE Transactions on Instrumentation and Measurement, 55(6), 2014–2021.

    Article  Google Scholar 

  25. Mehta, V. B. (1965). Comparison of RC networks for frequency stability in oscillators. Proceedings of the Institution of Electrical Engineers, 112(2), 296–300.

    Article  Google Scholar 

  26. Bhasker, D. R., Abdalla, K. K., & Senani, R. (2011). New SRCO with explicit current-mode output using two CCs and grounded capacitors. Turkish Journal of Electrical Engineering and Computer Sciences, 19(2), 235–242.

    Google Scholar 

  27. Maloberti, F. (2001). Analog design for CMOS VLSI systems (Chapter 4) (pp. 197–198). Boston: Kluwer Academic Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal K. Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagar, B.C., Paul, S.K. Lossless grounded FDNR simulator and its applications using OTRA. Analog Integr Circ Sig Process 92, 507–517 (2017). https://doi.org/10.1007/s10470-017-1021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1021-4

Keywords

Profiles

  1. Bal Chand Nagar